Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
2. R. Schwarz, R. Cabeça, E. Morgado, M. Niehus, O. Ambacher, C. P. Marques, and E. Alves, Diamond & Related Materials 16, 1437 (2007).
3. M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek, J. Appl. Phys. 86, 1114 (1999).
4. S. Nagarajan, Y. S. Lee, M. Senthil Kumar, O. H. Cha, C.-H. Hong, and E.-K. Suh, J. Phys.D: Appl. Phys. 41, 012001 (2008).
5. P. J. Sellin and J. Vaitkus, Nucl. Instr. Meth. A 557, 479 (2006).
6. E. Gaubas, S. Juršėnas, R. Tomašiūnas, J. Vaitkus, A. Žukauskas, A. Blue, M. Rahman, and K. M. Smith, Nucl. Instr. Meth. Phys. Res. A 546, 247 (2005).
7. E. Gaubas, V. Kovalevskij, A. Kadys et al., Nucl. Instrum. Meth. Phys. Res. B 307, 370 (2013).
8. E. Gaubas, K. Kazlauskas, R. Tomašiunas, J. Vaitkus, and A. Žukauskas, Appl. Phys. Lett. 84, 5258 (2004).
9. J. M. DeLucca, J. Appl. Phys. 88, 2593 (2000).
10. E. Gaubas, S. Juršenas, S. Miasojedovas, J. Vaitkus, and A. Žukauskas, J. Appl. Phys. 96, 4326 (2004).
11. V. V. Ursaki, I. M. Tiginyanu, P. C. Ricci, A. Anedda, S. Hubbard, and D. Pavlidis, J. Appl. Phys. 94, 3875 (2003).
12. E. Arslan, S. Butun, S. B. Lisesivdin, M. Kasap, S. Ozcelic, and E. Ozbay, J. Appl. Phys. 103, 103701 (2004).
13. D. Li, X. Dong, J. Huang, X. Liu, Zh. Xu, X. Wang, Z. Zhang, and Zh. Wang, J. Cryst. Growth 249, 72 (2003).
14. M. A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).
15. M. Birkholz, Thin film analysis by X-ray scattering (Wiley-VCH Verlag GmbH&Co. KgaA, Weinheim, 2006).
16. H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, Appl. Phys. Lett. 77, 2145 (2000).
17. A. D. Kurtz, S. A. Kulin, and B. L. Averbach, Phys. Rev. 101,1285 (1956).
18. M. A. Moram and M. E. Vickers, Rep. Prog. Phys. 72, 036502 (2009).
19. N. M. Shmidt, V. V. Sirotkin, A. A. Sitnikova, O. A. Soltanovich, R. V. Zolotareva, and E. B. Yakimov, Phys. Stat. Sol. (c) 2, 1797 (2005).
20. E. B. Yakimov, J. Phys.: Condens. Matter 14, 13069 (2002).
21. K. Yamamoto, H. Ishikawa, T. Egawa, T. Jimbo, and M. Umeno, J. Cryst. Growth 189/190, 575 (1998).
22. R. A. Smith, Semiconductors 2nd ed. (Cambridge University Press, Cambridge, 1978).
23. K. L. Luke and L. J. Cheng, J. Appl. Phys. 61, 2282 (1987).
24. E. Gaubas, J. Vaitkus, E. Simoen, C. Claeys, and J. Vanhellemont, Mater. Sci. Semicond. Process. 4, 125 (2001).
25. S. Havlin and D. Ben-Avraham, Advances in Physics 51, 187 (2002).
26. M. Gallart, T. Taliercio, A. Alemu, P. Lefebvre, B. Gil, J. AlleÁgre, H. Mathieu, and S. Nakamura, Phys. Stat. Sol. (b) 216, 365 (1999).<365::AID-PSSB365>3.0.CO;2-G
27. S. F. Chichibu, H. Marchand, M. S. Minsky, S. Keller, P. T. Fini, J. P. Ibbetson, S. B. Fleischer, J. S. Speck, J. E. Bowers, E. Hu, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 74, 1460 (1999).
28. G. Pozina, N. V. Edwards, J. P. Bergman, B. Monemar, M. D. Bremser, and R. F. Davis, Phys. Stat. Sol. (a) 183, 151 (2001).<151::AID-PSSA151>3.0.CO;2-C
29. J. Mickevičius, M. S. Shur, R. S. Fareed, J. P. Zhang, R. Gaska, and G. Tamulaitis, Appl. Phys. Lett. 87, 241918 (2005).
30. S. Juršėnas, S. Miasojedovas, G. Kurilčik, A. Žukauskas, and P. R. Hageman, Phys. Stat. Sol. (a) 201, 199 (2004).
31. B. Monemar, P. P. Paskov, J. P. Bergman, G. Pozina, A. A. Toropov, T. V. Shubina, and T. Malinauskas, Phys. Rev. B 82, 235202 (2010).
32. P. P. Paskova, R. Schifano, T. Paskova, T. Malinauskas, J. P. Bergman, B. Monemar, S. Figge, and D. Hommel, Physica B 376–377, 473 (2006).
33. B. Monemar, P. P. Paskov, J. P. Bergman, T. Paskova, C. Hemmingsson, T. Malinauskas, K. Jarasiunas, P. Gibart, and B. Beaumont, Physica B 376–377, 482 (2006).
34. J. C. Phillips, Journal of Non-Crystalline Solids 357, 3853 (2011).
35. J. C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).

Data & Media loading...


Article metrics loading...



The MOCVD grown GaN epi-layers of different thickness have been examined in order to clarify a role of surface recombination, to separate an impact of radiative and non-radiative recombination and disorder factors. The microwave probed –photoconductivity (MW-PC) and spectrally resolved photo-luminescence (PL) transients were simultaneously recorded under ultraviolet (UV) light 354 nm pulsed 500 ps excitation. The MW-PC transients exhibited the carrier decay components associated with carrier decay within micro-crystals and the disordered structure on the periphery areas surrounding crystalline columns. Three PL bands were resolved within PL spectrum, namely, the exciton ascribed UV-PL band edge for 3.3 eV, blue B-PL band for 2.5 < < 3.0 eV and yellow Y-PL band with < 2.4 eV. It has been obtained that intensity of UV-PL band increases with excitation density, while intensity of B-PL band is nearly invariant. However, intensity of the Y-PL increases with reduction of the excitation density. The Y-PL can be associated with trapping centers. A reduction of UV excitation density leads to a decrease of the relative amplitude of the asymptotic component within the MW-PC transients and to an increase of the amplitude as well as duration of the yellow spectral band (Y-PL) asymptotic component. Fractional index with values 0.5 < α < 0.8 was evaluated for the stretched-exponent component which fits the experimental transients determined by the disordered structure ascribed to the periphery areas surrounding the crystalline columns.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd