1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Tunable nanostructured composite with built-in metallic wire-grid electrode
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/11/10.1063/1.4837916
1.
1. Y. Qing, W. Zhou, F. Luo, and D. Zhu, Carbon 48, 14 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.07.014
2.
2. D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. Mariani Primiani, and F. Moglie, IEEE T. Microw. Theory 59, 10 (2011).
http://dx.doi.org/10.1109/TMTT.2011.2160198
3.
3. F. Qin and C. Brosseau, J. Appl. Phys. 111, 061301 (2012).
http://dx.doi.org/10.1063/1.3688435
4.
4. Y. Yang, M. Gupta, and K. Dudley, Nanotechnology 18, 34 (2007).
5.
5. L. Liu, L. Kong, W. Yin, and S. S. Matitsine, IEEE T. Electromagn. C. 53, 4 (2012).
6.
6. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, Nano Lett. 6, 6 (2006).
7.
7. D. Micheli, C. Apollo, R. Pastore, D. Barbera, R. Bueno Morles, M. Marchetti, G. Gradoni, V. Mariani Primiani, and F. Moglie, IEEE T. Electromagn. C. 54, 1 (2012).
http://dx.doi.org/10.1109/TEMC.2011.2171688
8.
8. D. R. Chase, C. Lee-Yin, and R. A. York, IEEE T. Microw. Theory 53, 10 (2005).
http://dx.doi.org/10.1109/TMTT.2005.855141
9.
9. W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, Opt. Express 20, 6 (2012).
10.
10. J. S. McGuirk, Ph.D. dissertation, USA Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (2009).
11.
11. K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, Appl. Phys. Lett. 93, 043518 (2008).
http://dx.doi.org/10.1063/1.2967192
12.
12. A. B. Ustinov, V. S. Tiberkevich, G. Srinivasan, A. N. Slavin, A. A. Semenov, S. F. Karmanenko, B. A. Kalinikos, J. V. Mantese, and R. Ramer, J. Appl. Phys. 100, 093905 (2006).
http://dx.doi.org/10.1063/1.2372575
13.
13. Q. Zhao, B. Du, L. Kang, H. Zhao, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, Appl. Phys. Lett. 92, 051106 (2008).
http://dx.doi.org/10.1063/1.2841811
14.
14. S. Kim and V. Gopalan, Appl. Phys. Lett. 78, 3015 (2001).
http://dx.doi.org/10.1063/1.1371786
15.
15. D. Micheli, C. Apollo, R. Pastore, and M. Marchetti, Compos. Sci. Technol. 70, 2 (2010).
http://dx.doi.org/10.1016/j.compscitech.2009.11.015
16.
16. A. Tennant and B. Chambers, Microw. Wirel. Co. 14, 1 (2004).
17.
17. C. Gau, C.-Y. Kuo, and H. S. Ko, Nanotechnology 20, 395705 (2009).
http://dx.doi.org/10.1088/0957-4484/20/39/395705
18.
18. R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 21, 284 (1999).
19.
19. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Nat. Commun. 2, 825 (2012).
http://dx.doi.org/10.1038/ncomms1806
20.
20. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, New York, 1994), p.678687.
21.
21. S. Wang, Z. Liang, B. Wang, and C. Zhang, Nanotechnology, 17, 634 (2006).
http://dx.doi.org/10.1088/0957-4484/17/3/003
22.
22. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Nano Lett. 4, 5 (2004).
http://dx.doi.org/10.1021/nl034590l
23.
23. W. S. Bao, S. A. Meguid, Z. H. Zhu, and G. J. Weng, J. Appl. Phys. 111, 9 (2012).
http://dx.doi.org/10.1063/1.4716010
24.
24. W. S. Bao, S. A. Meguid, Z. H. Zhu, Y. Pan, and G. J. Weng, J. Appl. Phys. 111, 9 (2013).
25.
25. B. De Vivo, P. Lamberti, G. Spinelli, and V. Tucci, J. Appl. Phys. 113, 24 (2013).
http://dx.doi.org/10.1063/1.4811523
26.
26. L. Liu, S. M. Matitsine, Y. B. Gan, and K. N. Rozanov, J. Appl. Phys. 98, 6 (2005).
27.
27. D. S. McLachlan and G. Sauti, J. Nanomater. 2007, 1 (2007).
http://dx.doi.org/10.1155/2007/30389
28.
28. Y. M. Strelniker, S. Havlin, and A. Frydman, Phys. Rev. E 69, 065105 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.065105
29.
29. Y. M. Strelniker, Phys. Rev. B 73, 153407 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.153407
30.
30. C. Brosseau, P. Queffelec, and P. Talbot, J. Appl. Phys. 89(8), 4532 (2001).
http://dx.doi.org/10.1063/1.1343521
31.
31. D. Stroud, Superlattices Microst. 23, 34 (1998).
http://dx.doi.org/10.1006/spmi.1997.0524
32.
32. Y. M. Strelniker, S. Havlin, and A. Frydman, Physica B, 394, 368 (2007).
http://dx.doi.org/10.1016/j.physb.2006.12.066
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4837916
Loading
/content/aip/journal/adva/3/11/10.1063/1.4837916
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/11/10.1063/1.4837916
2013-11-27
2014-10-21

Abstract

In this paper, the authors report an experimental demonstration of microwave reflection tuning in carbon nanostructure-based composites by means of an external voltage supplied to the material. DC bias voltages are imparted through a metal wire-grid. The magnitude of the reflection coefficient is measured upon oblique plane-wave incidence. Increasing the bias from 13 to 700 V results in a lowering of ∼20 dB, and a “blueshift” of ∼600 MHz of the material absorption resonance. Observed phenomena are ascribed to a change of the dielectric response of the carbon material. Inherently, the physical role of tunneling between nanofillers (carbon nanotubes) is discussed. Achievements aim at the realization of a tunable absorber. There are similar studies in literature that focus on tunable metamaterials operating at either optical or THz wavelengths.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/11/1.4837916.html;jsessionid=erdancbdqdim.x-aip-live-02?itemId=/content/aip/journal/adva/3/11/10.1063/1.4837916&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tunable nanostructured composite with built-in metallic wire-grid electrode
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4837916
10.1063/1.4837916
SEARCH_EXPAND_ITEM