1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Tunable nanostructured composite with built-in metallic wire-grid electrode
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/11/10.1063/1.4837916
1.
1. Y. Qing, W. Zhou, F. Luo, and D. Zhu, Carbon 48, 14 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.07.014
2.
2. D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. Mariani Primiani, and F. Moglie, IEEE T. Microw. Theory 59, 10 (2011).
http://dx.doi.org/10.1109/TMTT.2011.2160198
3.
3. F. Qin and C. Brosseau, J. Appl. Phys. 111, 061301 (2012).
http://dx.doi.org/10.1063/1.3688435
4.
4. Y. Yang, M. Gupta, and K. Dudley, Nanotechnology 18, 34 (2007).
5.
5. L. Liu, L. Kong, W. Yin, and S. S. Matitsine, IEEE T. Electromagn. C. 53, 4 (2012).
6.
6. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, Nano Lett. 6, 6 (2006).
7.
7. D. Micheli, C. Apollo, R. Pastore, D. Barbera, R. Bueno Morles, M. Marchetti, G. Gradoni, V. Mariani Primiani, and F. Moglie, IEEE T. Electromagn. C. 54, 1 (2012).
http://dx.doi.org/10.1109/TEMC.2011.2171688
8.
8. D. R. Chase, C. Lee-Yin, and R. A. York, IEEE T. Microw. Theory 53, 10 (2005).
http://dx.doi.org/10.1109/TMTT.2005.855141
9.
9. W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, Opt. Express 20, 6 (2012).
10.
10. J. S. McGuirk, Ph.D. dissertation, USA Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (2009).
11.
11. K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, Appl. Phys. Lett. 93, 043518 (2008).
http://dx.doi.org/10.1063/1.2967192
12.
12. A. B. Ustinov, V. S. Tiberkevich, G. Srinivasan, A. N. Slavin, A. A. Semenov, S. F. Karmanenko, B. A. Kalinikos, J. V. Mantese, and R. Ramer, J. Appl. Phys. 100, 093905 (2006).
http://dx.doi.org/10.1063/1.2372575
13.
13. Q. Zhao, B. Du, L. Kang, H. Zhao, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, Appl. Phys. Lett. 92, 051106 (2008).
http://dx.doi.org/10.1063/1.2841811
14.
14. S. Kim and V. Gopalan, Appl. Phys. Lett. 78, 3015 (2001).
http://dx.doi.org/10.1063/1.1371786
15.
15. D. Micheli, C. Apollo, R. Pastore, and M. Marchetti, Compos. Sci. Technol. 70, 2 (2010).
http://dx.doi.org/10.1016/j.compscitech.2009.11.015
16.
16. A. Tennant and B. Chambers, Microw. Wirel. Co. 14, 1 (2004).
17.
17. C. Gau, C.-Y. Kuo, and H. S. Ko, Nanotechnology 20, 395705 (2009).
http://dx.doi.org/10.1088/0957-4484/20/39/395705
18.
18. R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 21, 284 (1999).
19.
19. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Nat. Commun. 2, 825 (2012).
http://dx.doi.org/10.1038/ncomms1806
20.
20. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, New York, 1994), p.678687.
21.
21. S. Wang, Z. Liang, B. Wang, and C. Zhang, Nanotechnology, 17, 634 (2006).
http://dx.doi.org/10.1088/0957-4484/17/3/003
22.
22. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Nano Lett. 4, 5 (2004).
http://dx.doi.org/10.1021/nl034590l
23.
23. W. S. Bao, S. A. Meguid, Z. H. Zhu, and G. J. Weng, J. Appl. Phys. 111, 9 (2012).
http://dx.doi.org/10.1063/1.4716010
24.
24. W. S. Bao, S. A. Meguid, Z. H. Zhu, Y. Pan, and G. J. Weng, J. Appl. Phys. 111, 9 (2013).
25.
25. B. De Vivo, P. Lamberti, G. Spinelli, and V. Tucci, J. Appl. Phys. 113, 24 (2013).
http://dx.doi.org/10.1063/1.4811523
26.
26. L. Liu, S. M. Matitsine, Y. B. Gan, and K. N. Rozanov, J. Appl. Phys. 98, 6 (2005).
27.
27. D. S. McLachlan and G. Sauti, J. Nanomater. 2007, 1 (2007).
http://dx.doi.org/10.1155/2007/30389
28.
28. Y. M. Strelniker, S. Havlin, and A. Frydman, Phys. Rev. E 69, 065105 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.065105
29.
29. Y. M. Strelniker, Phys. Rev. B 73, 153407 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.153407
30.
30. C. Brosseau, P. Queffelec, and P. Talbot, J. Appl. Phys. 89(8), 4532 (2001).
http://dx.doi.org/10.1063/1.1343521
31.
31. D. Stroud, Superlattices Microst. 23, 34 (1998).
http://dx.doi.org/10.1006/spmi.1997.0524
32.
32. Y. M. Strelniker, S. Havlin, and A. Frydman, Physica B, 394, 368 (2007).
http://dx.doi.org/10.1016/j.physb.2006.12.066
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4837916
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM micrographs: (a) the typical bundle-based agglomerated structure of the as-received MWCNTs employed; (b) MWCNTs after the sonication: the pristine material becomes quite homogeneously (randomly) dispersed by the exfoliation in alcoholic environment; (c) fracture surface image of the epoxy matrix loaded at 1wt% with MWCNTs.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Schematic representation of the measurement of the voltage biased composite reflection coefficient: the probing electromagnetic wave is reflected by the material with built in electrodes. In the (b) a schematic representation of the bistatic arch system for the measurement of reflection coefficient is also shown.

Image of FIG. 3.

Click to view

FIG. 3.

Pictures of the tiles realization. In (a), a DC bias 1 tile after the cure, with the grid of electrodes dipped in the composite mixture within the aluminum mold. In (b), the poured mixture for a DC bias 2 tile, with the arrangement of parallel electrodes fixed to the wood frame.

Image of FIG. 4.

Click to view

FIG. 4.

Electromagnetic reflectivity of (a) DC BIAS 1 and (b) DC BIAS 2 tile in the frequency range 2–18 GHz related to the applied DC voltage.

Loading

Article metrics loading...

/content/aip/journal/adva/3/11/10.1063/1.4837916
2013-11-27
2014-04-17

Abstract

In this paper, the authors report an experimental demonstration of microwave reflection tuning in carbon nanostructure-based composites by means of an external voltage supplied to the material. DC bias voltages are imparted through a metal wire-grid. The magnitude of the reflection coefficient is measured upon oblique plane-wave incidence. Increasing the bias from 13 to 700 V results in a lowering of ∼20 dB, and a “blueshift” of ∼600 MHz of the material absorption resonance. Observed phenomena are ascribed to a change of the dielectric response of the carbon material. Inherently, the physical role of tunneling between nanofillers (carbon nanotubes) is discussed. Achievements aim at the realization of a tunable absorber. There are similar studies in literature that focus on tunable metamaterials operating at either optical or THz wavelengths.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/11/1.4837916.html;jsessionid=297kutrd7odr4.x-aip-live-02?itemId=/content/aip/journal/adva/3/11/10.1063/1.4837916&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tunable nanostructured composite with built-in metallic wire-grid electrode
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4837916
10.1063/1.4837916
SEARCH_EXPAND_ITEM