Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Qing, W. Zhou, F. Luo, and D. Zhu, Carbon 48, 14 (2010).
2. D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. Mariani Primiani, and F. Moglie, IEEE T. Microw. Theory 59, 10 (2011).
3. F. Qin and C. Brosseau, J. Appl. Phys. 111, 061301 (2012).
4. Y. Yang, M. Gupta, and K. Dudley, Nanotechnology 18, 34 (2007).
5. L. Liu, L. Kong, W. Yin, and S. S. Matitsine, IEEE T. Electromagn. C. 53, 4 (2012).
6. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, Nano Lett. 6, 6 (2006).
7. D. Micheli, C. Apollo, R. Pastore, D. Barbera, R. Bueno Morles, M. Marchetti, G. Gradoni, V. Mariani Primiani, and F. Moglie, IEEE T. Electromagn. C. 54, 1 (2012).
8. D. R. Chase, C. Lee-Yin, and R. A. York, IEEE T. Microw. Theory 53, 10 (2005).
9. W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, Opt. Express 20, 6 (2012).
10. J. S. McGuirk, Ph.D. dissertation, USA Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (2009).
11. K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, Appl. Phys. Lett. 93, 043518 (2008).
12. A. B. Ustinov, V. S. Tiberkevich, G. Srinivasan, A. N. Slavin, A. A. Semenov, S. F. Karmanenko, B. A. Kalinikos, J. V. Mantese, and R. Ramer, J. Appl. Phys. 100, 093905 (2006).
13. Q. Zhao, B. Du, L. Kang, H. Zhao, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, Appl. Phys. Lett. 92, 051106 (2008).
14. S. Kim and V. Gopalan, Appl. Phys. Lett. 78, 3015 (2001).
15. D. Micheli, C. Apollo, R. Pastore, and M. Marchetti, Compos. Sci. Technol. 70, 2 (2010).
16. A. Tennant and B. Chambers, Microw. Wirel. Co. 14, 1 (2004).
17. C. Gau, C.-Y. Kuo, and H. S. Ko, Nanotechnology 20, 395705 (2009).
18. R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 21, 284 (1999).
19. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Nat. Commun. 2, 825 (2012).
20. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, New York, 1994), p.678687.
21. S. Wang, Z. Liang, B. Wang, and C. Zhang, Nanotechnology, 17, 634 (2006).
22. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Nano Lett. 4, 5 (2004).
23. W. S. Bao, S. A. Meguid, Z. H. Zhu, and G. J. Weng, J. Appl. Phys. 111, 9 (2012).
24. W. S. Bao, S. A. Meguid, Z. H. Zhu, Y. Pan, and G. J. Weng, J. Appl. Phys. 111, 9 (2013).
25. B. De Vivo, P. Lamberti, G. Spinelli, and V. Tucci, J. Appl. Phys. 113, 24 (2013).
26. L. Liu, S. M. Matitsine, Y. B. Gan, and K. N. Rozanov, J. Appl. Phys. 98, 6 (2005).
27. D. S. McLachlan and G. Sauti, J. Nanomater. 2007, 1 (2007).
28. Y. M. Strelniker, S. Havlin, and A. Frydman, Phys. Rev. E 69, 065105 (2004).
29. Y. M. Strelniker, Phys. Rev. B 73, 153407 (2006).
30. C. Brosseau, P. Queffelec, and P. Talbot, J. Appl. Phys. 89(8), 4532 (2001).
31. D. Stroud, Superlattices Microst. 23, 34 (1998).
32. Y. M. Strelniker, S. Havlin, and A. Frydman, Physica B, 394, 368 (2007).

Data & Media loading...


Article metrics loading...



In this paper, the authors report an experimental demonstration of microwave reflection tuning in carbon nanostructure-based composites by means of an external voltage supplied to the material. DC bias voltages are imparted through a metal wire-grid. The magnitude of the reflection coefficient is measured upon oblique plane-wave incidence. Increasing the bias from 13 to 700 V results in a lowering of ∼20 dB, and a “blueshift” of ∼600 MHz of the material absorption resonance. Observed phenomena are ascribed to a change of the dielectric response of the carbon material. Inherently, the physical role of tunneling between nanofillers (carbon nanotubes) is discussed. Achievements aim at the realization of a tunable absorber. There are similar studies in literature that focus on tunable metamaterials operating at either optical or THz wavelengths.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd