1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Third law of thermodynamics for the dissipative cyclotron motion
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/11/10.1063/1.4837935
1.
1. P. Hänggi and G.-L. Ingold, Chaos 15, 026105 (2005).
http://dx.doi.org/10.1063/1.1853631
2.
2. C. Jarzynski, C. R. Physique 8, 495 (2007).
http://dx.doi.org/10.1016/j.crhy.2007.04.010
3.
3. J. Horowitz and C. Jarzynski, J. Stat. Mech., P11002 (2007.
http://dx.doi.org/10.1088/1742-5468/2007/11/P11002
4.
4. P. Hänggi and G.-L. Ingold, Acta Phys. Pol. B 37, 1537 (2006).
5.
5. P. Hänggi, G. L. Ingold, and P. Talkner, New J. Phys. 10, 115008 (2008).
http://dx.doi.org/10.1088/1367-2630/10/11/115008
6.
6. Jishad Kumar, P. A. Sreeram, and S. Dattagupta, Phys. Rev E 79, 021130 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.021130
7.
7. M. Bandyopadhyay, J. Stat. Mech., P05002 (2009).
http://dx.doi.org/10.1088/1742-5468/2009/05/P05002
8.
8. G.-L. Ingold, P. Hänggi, and P. Talkner, Phys. Rev. E 79, 061105 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.061105
9.
9. M. Campisi, P. Talkner, and P. Hänggi, J. Phys. A: Math. Theor. 42, 392002 (2009).
http://dx.doi.org/10.1088/1751-8113/42/39/392002
10.
10. S. Dattagupta, Jishad Kumar, S. Sinha, and P. A. Sreeram, Phys. Rev. E 81, 031136 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.031136
11.
11. M. Bandyopadhyay and S. Dattagupta, Phys. Rev. E 81, 042102 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.042102
12.
12. M. Bandyopadhyay, J. Stat. Phys. 140, 603 (2010).
http://dx.doi.org/10.1007/s10955-010-9998-4
13.
13. H. Hasegawa, Jour. Math. Phys. 52, 123301 (2011).
http://dx.doi.org/10.1063/1.3669485
14.
14. G.-L. Ingold, Eur. Phys. J. B 85, 30 (2012).
http://dx.doi.org/10.1140/epjb/e2011-20930-2
15.
15. B. Spreng, G.-L. Ingold, and U. Weiss, arXive:1308.3049.
16.
16. A. O. Caldeira, A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981);
http://dx.doi.org/10.1103/PhysRevLett.46.211
16.A. O. Caldeira and A. J. Leggett, Physica (Amsterdam) 121A, 587 (1983);
16.A. O. Caldeira, A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1984);
http://dx.doi.org/10.1016/0003-4916(83)90202-6
16.A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
http://dx.doi.org/10.1103/RevModPhys.59.1
17.
17. R. P. Feynman and F. L. Vernon, Ann. Phys. NY 24, 118 (1963);
http://dx.doi.org/10.1016/0003-4916(63)90068-X
17.R. P. Feynman, Statistical Mechanics (Addison-Wesley, Redwood City, 1972).
18.
18. H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep. 168, 115 (1988).
http://dx.doi.org/10.1016/0370-1573(88)90023-3
19.
19. G.-L. Ingold, Lect. Notes Phys. 611, 1 (2002).
http://dx.doi.org/10.1007/3-540-45855-7
20.
20. M. Planck, Vorlesungen über Thermodynamik (Veit & Comp., 1917).
21.
21. A. J. Leggett, Ann. Phys. (N. Y.) 72, 80 (1972).
http://dx.doi.org/10.1016/0003-4916(72)90237-0
22.
22. A. Einstein, Ann. Phys. 22, 180 (1907);
22.A. Einstein, Ann. Phys. 22, 800 (1907);
http://dx.doi.org/10.1002/andp.19073270415
22.A. Einstein, Ann. Phys. 35, 679 (1911).
23.
23. R. E. Prange, S. M. Girvin, eds., The Quantum Hall Effect (Springer, Berlin, 1987).
24.
24. N. P. Ong, in: Physical properties of High Temperature Superconductors, ed. D. M. Ginsberg (World Scientific, Singapore, 1990), Vol.2.
25.
25. D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984).
26.
26. X. L. Li, G. W. Ford, and R. F. O'Connell, Phys. Rev. A 41, 10 (1990).
27.
27. X. L. Li, G. W. Ford, and R. F. O'Connell, Phys. Rev. A 42, 8 (1990).
http://dx.doi.org/10.1103/PhysRevA.42.4519
28.
28. X. L. Li and R. F. O'Connell, Physica A 224, 639668 (1996).
http://dx.doi.org/10.1016/0378-4371(95)00295-2
29.
29. T. M. Hong, J. M. Wheatley, Phys. Rev. B 42, 6492 (1990);
http://dx.doi.org/10.1103/PhysRevB.42.6492
29.T. M. Hong, J. M. Wheatley, Phys. Rev. B 43, 5702 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.5702
30.
30. S. Dattagupta and J. Singh, Phys. Rev. Lett. 79, 961 (1997);
http://dx.doi.org/10.1103/PhysRevLett.79.961
30.S. Dattagupta, J. Singh, Pramana 47, 211 (1996).
http://dx.doi.org/10.1007/BF02847765
31.
31. M. Bandyopadhyay and S. Dattagupta, J. Stat. Phys. 123, 1273 (2006).
http://dx.doi.org/10.1007/s10955-006-9114-y
32.
32. M. Bandyopadhyay and S. Dattagupta, J. Phys. Condens. Matter 18, 10029 (2006).
http://dx.doi.org/10.1088/0953-8984/18/44/004
33.
33. Jishad Kumar, Physica A 393C(1), 182206 (2014).
http://dx.doi.org/10.1016/j.physa.2013.08.046
34.
34. Zhan-Wu Bai, Jing-Dong Bao, and Yan-Li Song, Phys. Rev. E 72, 061105 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.061105
35.
35. Jing-Dong Bao, Yan-Li Song, Qing Ji, and Yi-Zhang Zhuo, Phys. Rev. E 72, 011113 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.011113
36.
36. L. Schimansky-Geier and Ch. Zülicke, Z. Phys. B: Condens. Matter 79, 41 (1990).
http://dx.doi.org/10.1007/BF01437657
37.
37. T. Munakata and T. Kawakatsu, Prog. Theor. Phys. 74, 262 (1985).
http://dx.doi.org/10.1143/PTP.74.262
38.
38. M. I. Dykman, P. V. E. McClintok, N. D. Stein, and N. G. Stocks, Phys. Rev. Lett. 67, 933 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.933
39.
39. M. I. Dykman, R. Mannella, P. V. E. McClintok, N. D. Stein, and N. G. Stocks, Phys. Rev. E 47, 3996 (1993).
http://dx.doi.org/10.1103/PhysRevE.47.3996
40.
40. M. Millonas and M. I. Dykman, Phys. Lett. A 185, 65 (1994).
http://dx.doi.org/10.1016/0375-9601(94)90989-X
41.
41. R. Bartussek, P. Hänggi, B. Lindner, and L. Schimansky-Geier, Physica D 109, 17 (1997).
http://dx.doi.org/10.1016/S0167-2789(97)00154-1
42.
42. P. S. Landa, Phys. Rev. E 58, 1325 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.1325
43.
43. K. Mallick, Physica A 384, 64 (2007).
http://dx.doi.org/10.1016/j.physa.2007.04.070
44.
44. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets (World Scientific, Singapore, 2004).
45.
45. U. Weiss, Quantum Dissipative Systems, 2nd ed. (World Scientific, Singapore, 1999).
46.
46. Jing-Dong Bao and Yi-Zhong Zhuo, Phys. Rev. E 71, 010102R (2005).
http://dx.doi.org/10.1103/PhysRevE.71.010102
47.
47. C. Y. Wang and J. D. Bao, Chin. Phys. Lett. 25, 429 (2008).
http://dx.doi.org/10.1088/0256-307X/25/2/021
48.
48. B. Z-Wu, Chin. Phys. Lett. 29, 060503 (2012).
http://dx.doi.org/10.1088/0256-307X/29/6/060503
49.
49. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 6th ed. (Academic Press, USA, 2000).
50.
50. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, New York, 1954).
51.
51. L. Jacak, P. Hawrylak and A. Wojs, Quantum Dots (Springer-Verlag, Berlin, 1997).
52.
52. W. D. Heiss and R. G. Nazmitdinov, Phys. Rev. B 55, 16310 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.16310
53.
53. M. Dineykhan and R. G. Nazmitdinov, Phys. Rev. B 55, 13707 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.13707
54.
54. Sh. A. Kalandarov, Z. Kanokov, G. G. Adamian, and N. V. Antonenko, Phys. Rev. E 75, 031115 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.031115
55.
55. J. L. Garcia-Palacious, Adv. Chem. Phys. 1, 112 (2000).
56.
56. G. Grinstein and G. Mazenko (Eds.), Directions in Condensed Matter Physics (World Scientific, Singapore, 1986).
57.
57. S. Datta, Electronic Transport in Mesoscopic Systems (Cambrdige University Press, Cambridge, 1977).
58.
58. Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Oxford, 1997).
59.
59. S. Chakravarty and A. Schmid, Phys. rep. 140, 193 (1986).
http://dx.doi.org/10.1016/0370-1573(86)90027-X
60.
60. C. H. Bennett, Phys. Today 48(10), 24 (1995).
http://dx.doi.org/10.1063/1.881452
61.
61. A. Zeilinger, Nature 408, 639 (2000);
http://dx.doi.org/10.1038/35047177
61.A. Zeilinger, Science 289, 405 (2000).
http://dx.doi.org/10.1126/science.289.5478.405
62.
62. D. Giulini, E. Joos, C. Kiefer, J. Kupischg, I. O. Stamatescu and H. D. Zeh, Decoherence and the Appearence of a Classical World in Quantum Theory (Springer, New York, 1996).
63.
63. C. J. Myatt, B. E. King, Q. A. Turchette, C. A. Sackett, D. Kielpinski, W. M. Iatano, C. Monroe, and D. J. Wineland, Nature 403, 269 (2000).
http://dx.doi.org/10.1038/35002001
64.
64. V. L. Ginzburg and A. V. Gurevich, Usp. Fiz. Nauk 70, 201 (1960).
65.
65. H. Friedrich and D. Wintgen, Phys. Rep. 183, 37 (1989).
http://dx.doi.org/10.1016/0370-1573(89)90121-X
66.
66. A. Holle, J. Main, G. Wiebusch, H. Rottke, and K. H. Welge, Phys. Rev. Lett. 61, 161 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.161
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4837935
Loading
/content/aip/journal/adva/3/11/10.1063/1.4837935
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/11/10.1063/1.4837935
2013-11-25
2014-08-23

Abstract

We derive the heat capacity and the entropy of an exactly solvable model of a charged particle in the combined presence of a uniform homogeneous magnetic field and a finite dissipative quantum heat bath consisting of non interacting harmonic oscillators. The quantities are calculated from the reduced partition function of the damped system which is calculated using the imaginary time functional integral method within the framework of the well known microscopic system-plus-bath model. Unlike the typical choice of an ohmic spectral density of the bath oscillators, we consider the quantum heat bath is having a spectral density corresponding to a thermal harmonic noise. Subsequently we analyse the specific heat and entropy at low and high temperatures. The specific heat and the entropy obtained satisfy the third law of thermodynamics. The heat capacity vanishes as the temperature approaches its absolute zero value, as predicted by the third law of thermodynamics, and satisfies the classical equipartition theorem at high temperatures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/11/1.4837935.html;jsessionid=1m1m41aal1cb5.x-aip-live-02?itemId=/content/aip/journal/adva/3/11/10.1063/1.4837935&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Third law of thermodynamics for the dissipative cyclotron motion
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4837935
10.1063/1.4837935
SEARCH_EXPAND_ITEM