Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Beard, S. Frauendorf, B. Kampfer, R. Schwengner, and M. Wiescher, “Photonuclear and radiative-capture reaction rates for nuclear astrophysics and transmutation: 92 − 100Mo, 88Sr, 90Zr, and 139La,” Phys. Rev. C 85, 065108 (2012).
2. T. D. Thiep, T. T. An, N. T. Khai, P. V. Cuong, N. T. Vinh, A. G. Belov, and O. D. Maslo, “Study of the isomeric ratios in photonuclear reactions of natural Selenium induced by bremsstrahlungs with end-point energies in the giant dipole resonance region,” J. Radioanal. Nucl. Chemistry 292, 1035 (2012).
3. A. Giulietti, N. Bourgeois, T. Ceccotti, X. Davoine, S. Dobosz, P. D’Oliveira, M. Galimberti, J. Galy, A. Gamucci, D. Giulietti, L. A. Gizzi, D. J. Hamilton, E. Lefebvre, L. Labate, J. R. Marques, P. Monot, H. Popescu, F. Reau, G. Sarri, P. Tomassini, and P. Martin, “Intense γ-ray source in the giant-dipole-resonance range driven by 10 − Tw laser pulses,” Phys. Rev. Lett. 101, 105002 (2008).
4. V. G. Neudatchin, V. I. Kukulin, V. N. Pomerantsev, and A. A. Sakharuk, “Generalized potential-model description of mutual scattering of the lightest p + d, d + 3He nuclei and the corresponding photonuclear reactions,” Phys. Rev. C 45, 1512 (1992).
5. V. N. Litvinenko, B. Burnham, M. Emamian, N. Hower, J. M. J. Madey, P. Morcombe, P. G. O’Shea, S. H. Park, R. Sachtschale, K. D. Straub, G. Swift, P. Wang, Y. Wu, R. S. Canon, C. R. Howell, N. R. Roberson, E. C. Schreiber, M. Spraker, W. Tornow, H. R. Weller, I. V. Pinayev, N. G. Gavrilov, M. G. Fedotov, G. N. Kulipanov, G. Y. Kurkin, S. F. Mikhailov, V. M. Popik, A. N. Skrinsky, N. A. Vinokurov, B. E. Norum, A. Lumpkin, and B. Yang, “Gamma-Ray Production in a Storage Ring Free-Electron Laser,” Phys. Rev. Lett. 78, 4569 (1997).
6. S. Amano, K. Horikawa, K. Ishihara, S. Miyamoto, T. Hayakawa, T. Shizuma, and T. Mochizuki, “Several-MeV g-ray generation at new SUBARU by laser Compton backscattering,” Nucl. Instr. Method A 602, 337 (2009).
7. S. V. Bulanov, T. Zh. Esirkepov, Y. Hayashi, M. Kando, H. Kiriyama, J. K. Koga, K. Kondo, H. Kotaki, A. S. Pirozhhkov, S. S. Bulanov, A. G. Zhidkov, P. Chen, D. Neely, Y. Kato, N. B. Narozhny, and G. Korn, “On the design of experiments for the study of extreme field limits in the interaction of laser with ultrarelativistic electron beam,” Nucl. Instr. Meth. Phys. Res. A660, 31 (2011).
8. C. Maroli, V. Petrillo, P. Tomassini, and L. Serafin, “Nonlinear effects in Thomson backscattering,” Phys. Rev. Accel. Beams 16, 030706 (2013).
9. E. V. Abakumova, M. N. Achasov, D. E. Berkaev, V. V. Kaminsky, N. Yu. Muchnoi, E. A. Perevedentsev, E. E. Pyata, and Yu. M. Shatunov, “Backscattering of Laser Radiation on Ultrarelativistic Electrons in a Transverse Magnetic Field: Evidence of MeV-Scale Photon Interference,” Phys. Rev. Lett. 110, 140402 (2013).
10. S. S. Bulanov, C. B. Schroeder, E. Esarey, and W. P. Leemans, “Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses,” Phys. Rev. A 87, 062110 (2013).
11. K. Krajewska, C. Muller, and J. Z. Kaminski, “Bethe-Heitler pair production in ultrastrong short laser pulses,” Phys. Rev. A 87, 062107 (2013).
12. S. Cipiccia, S. M. Wiggins, R. P. Shanks, M. R. Islam, G. Vieux, R. C. Issac, E. Brunetti, B. Ersfeld, G. H. Welsh, M. P. Anania, D. Maneuski, N. R. C. Lemos, R. A. Bendoyro, P. P. Rajeev, P. Foster, N. Bourgeois, T. P. A. Ibbotson, P. A. Walker, V. O. Shea, J. M. Dias, and D. A. Jaroszynski, “A tuneable ultra-compact high-power, ultra-short pulsed, bright gamma-ray source based on bremsstrahlung radiation from laser-plasma accelerated electrons,” J. Appl. Phys. 111, 063302 (2012).
13. A. Makinaga, K. Kato, T. Kamiyama, and K. Yamamoto, “Development of a new bremsstrahlung source for nuclear astrophysics,” in The 10th International Symposium on Origin of Matter and Evolution of Galaxies, OMEG-2010, Osaka, Japan, 8–10 March 2010, edited by I. Tanihara, H. J. Ong, A. Tamii, T. Kishimoto, S. Kubano, and T. Shima (AIP Conf. Proc. 1269, 2010), pp. 394396.
14. S. Matinyan, “Lasers as a bridge between atomic and nuclear physics,” Phys. Reps. 298, 199 (1998).
15. K. W. D. Ledingham, P. McKenna, and R. P. Singhal, “Applications for Nuclear Phenomena Generated by Ultra-Intense Lasers,” Science 300, 1107 (2003).
16. K. V. D. Ledingham and W. Galster, “Laser-driven particle and photon beams and some applications,” New J. Phys. 12, 045005 (2010).
17. W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Toth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “Particle physics GeV electron beams from a centimetre-scale accelerator,” Nature Physics 2, 696 (2006).
18. M. Apostol and M. Ganciu, “Polaritonic pulse and coherent X- and gamma rays from Compton (Thomson) backscattering,” J. Appl. Phys. 109, 013307 (2011).
19. G. A. Mourou, N. J. Fisch, V. M. Malkin, Z. Toroker, E. A. Khazanov, A. M. Sergeev, T. Tajima, and T. B. Le Garrec, “Exawatt-Zettawatt pulse generation and applications,” Optics Commun. 285, 720 (2012).
20. H. Schwoerer, J. Magill, and B. Beleites (eds.), Lasers and Nuclei: Applications of Ultrahigh Intensity Lasers in Nuclear Science, Springer Lectures Notes in Phys. 694 (Springer, Berlin, Heidelberg, 2006).
21. C. A. Bertulani, S. R. Klein, and J. Nystrand, “Physics of ultra-peripheral nuclear collisions,” Annual Rev. Nucl. Particle Sci. 55, 271 (2005).
22. A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, “Nonperturbative Vacuum-Polarization Effects in Proton-Laser Collisions,” Phys. Rev. Lett. 100, 010403 (2008).
23. D. d’Enterria and G. G. da Silveira, “Observing Light-by-Light Scattering at the Large Hadron Collider,” Phys. Rev. Lett. 111, 080405 (2013).
24. D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, A. W. Weidemann, C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis, and W. Ragg, “Positron Production in Multiphoton Light-by-Light Scattering,” Phys. Rev. Lett. 79, 1626 (1997).
25. C. Muller, “Non-linear Bethe-Heitler pair creation with attosecond laser pulses at the LHC,” Phys. Lett. B 672, 56 (2009).
27. E. G. Bessonov and K.-J. Kim, “Gamma ray sources based on resonant backscattering of laser beams with relativistic heavy ion beams,” in Proc of the 16th Biennial Particle Accelerator Conference, Dallas, May 1995, Vols. 1–5 (1996), pp. 28952897.
28. S. V. Bulanov, T. Esirkepov, and T. Tajima, “Light Intensification towards the Schwinger Limit,” Phys. Rev. Lett. 91, 085001 (2003).
29. C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, W. Ragg, D. L. Burke, R. C. Field, G. Horton-Smith, A. C. Odian, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, and A. W. Weidemann, “Observation of Nonlinear Effects in Compton Scattering,” Phys. Rev. Lett. 76, 3116 (1996).
30.Extreme Light Infrastructure-Nuclear Physics Project (ELI-NP),,
31. A. Lampa, “Wie erscheint nach der Relativitatstheorie ein bewegter Stab einem ruhenden Beobachter,” Z. Phys. 27, 138 (1924).
32. J. Terrell, “Invisibility of the Lorentz contraction,” Phys. Rev. 116, 1041 (1959).
33. R. Penrose, “The apparent shape of a relativistically moving sphere,” Math. Proc. Cambridge Phil. Soc. 55, 137 (1959).
34. J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Dover, NY, 1979).
35. M. Goldhaber and E. Teller, “On nuclear dipole vibrations,” Phys. Rev. 74, 1046 (1948).
36. H. A. Weidenmuller, “Nuclear Excitation by a Zeptosecond Multi-MeV Laser Pulse,” Phys. Rev. Lett. 106, 122502 (2011).
37. A. Di Piazza, C. Muller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Revs. Mod. Phys. 84, 1177 (2012).
38. W. Heitler, The Quantum Theory of Radiation (Dover, NY, 1984).
39. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics: Course of Theoretical Physics, edited by L. Landau and E. Lifshitz, Vol. 4 (Butterworth-Heinemann, Oxford, 1982).

Data & Media loading...


Article metrics loading...



The coupling of photons with (ultra-) relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare) nuclei (fully stripped of electrons) are accelerated to energies ≃ 1 TeV per nucleon (according to the state of the art at LHC, for instance) and photon sources like petawatt lasers ≃ 1 eV-radiation (envisaged by ELI-NP project, for instance), or free-electron laser ≃ 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical) polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration) is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd