Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. V. P. Afanas'ev, I. P. Pronin, and A. L. Kholkin, Phys. Solid State 48, 1214 (2006).
2. K. Bdikin, J. A. Perez, I. Coondoo, A. M. R. Senos, P. Q. Mantas, and A. L. Kholkin, J. Appl. Phys. 110, 052003 (2011).
3. D. Pantel, S. Goetze, D. Hesse, and M. Alexe, Nature Mater. 11, 289 (2012).
4. D. Pantel, S. Goetze, D. Hesse, and M. Alexe, Acs Nano 5, 6032 (2011).
5. H. Lu, C. W. Bark, D. Esque de los Ojos, J. Alcala, C. B. Eom, G. Catalan, and A. Gruverman, Science 336, 59 (2012).
6. A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, M. Y. Zhuravlev, D. Felker, M. Rzchowski, C. B. Eom, and E. Y. Tsymbal, Nano Lett. 9, 3539 (2009).
7. I. Coondoo, N. Panwar, I. Bdikin, V. S. Puli, R. S. Katiyar, and A. L. Kholkin, J. Phys. D: Appl. Phys. 45, 055302 (2012).
8. A. Q. Jiang, C. Wang, K. J. Jin, X. B. Liu, J. F. Scott, C. S. Hwang, T. A. Tang, H. B. Lu, and G. Z. Yang, Adv. Mater. 23, 1277 (2011).
9. P. Yua, W. Luob, D. Yia, J. X. Zhang, M. D. Rosselld, C. H. Yang, L. Youg, G. Singh-Bhalla, S. Y. Yang, Q. Hea, Q. M. Ramasse, R. Ernid, L. W. Martin, Y. H. Chu, S. T. Pantelides, S. J. Pennycook, and R. Ramesh, PNAS Early Edition 109, 9710 (2012).
10. M. Qin, K. Yao, Y. C. Liang, and B. K. Gan, Appl. Phys. Lett. 91, 092904 (2007).
11. M. Qin, K. Yao, and Y. C. Liang, J. Appl. Phys. 105, 061624 (2009).
12. M. Qin, K. Yao, and Y. C. Liang, Appl. Phys. Lett. 95, 022912 (2009).
13. G. L. Yuan, L. W. Martin, R. Ramesh, and A. Uedono, Appl. Phys. Lett. 95, 012904 (2009).
14. Y. A. Genenko, J. Glaum, O. Hirsch, H. Kungl, M. J. Hoffmann, and T. Granzou, Phys. Rev. B 80, 224109 (2009).
15. T. Hashimoto and H. Moriwake, Phys. Rev. B 78, 092106 (2008).
16. L. E. Cross, J. Mater. Sci. 41, 53 (2006).
17. Y. P. Yao and H. X. Fu, Phys. Rev. B 84, 064112 (2011).
18. G. Catalan, A. Lubk, A. H. G. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens, G. Rijnders, D. H. A. Blank, and B. Noheda, Nature Mater. 10, 963 (2011).
19. J. P. Chen, Y. Luo, X. Ou, G. L. Yuan, Y. P. Wang, Y. Yang, J. Yin, and Z. G. Liu, J. Appl. Phys. 113, 204105 (2013).

Data & Media loading...


Article metrics loading...



Upward self-poling phenomenon was observed in PbZrTiO ferroelectric films which were grown on (001) SrTiO substrate with either p-type LaSrMnO or n-type SrRuO buffered layer, or on n-type (001) Nb-SrTiO substrate. Both upward self-poling and epitaxial strain are strong in the super-thin PbZrTiO epitaxial films, while they become weak and finally disappear in thick epitaxial films or thin epitaxial films with high-density oxygen vacancies. Besides, both of them disappear in PbZrTiO polycrystalline films on Pt/TiO/SiO/Si substrate. Therefore, the main origin of upward self-poling is epitaxial strain rather than p-n/Schottky junction or charged vacancies in PbZrTiO epitaxial films here.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd