Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. Gogolides, V. Constantoudis, G. Kokkoris, D. Kontziampasis, K. Tsougeni, G. Boulousis, M. Vlachopoulou, and A. Tserepi, Journal of Physics D - Applied Physics 44(17), 174021 (2011).
2. K. H. Becker, K. H. Schoenbach, and J. G. Eden, Journal of Physics D - Applied Physics 39(3), R55 (2006).
3. J. Roth, E. Tsitrone, and A. Loarte, Journal of Physics: Conference Series 100 (2008).
4. V. Philipps, Physica Scripta T123, 24 (2006);
4.B. Lipschultz, X. Bonnin, G. Counsell, A. Kallenbach, A. Kukushkin, K. Krieger, A. Leonard, A. Loarte, R. Neu, R. A. Pitts, T. Rognlien, J. Roth, C. H. Skinner, J. L. Terry, E. Tsitrone, D. Whyte, S. Zweben, N. Asakura, D. Coster, R. Doerner, R. Dux, G. Federici, M. Fenstermacher, W. Fundamenski, P. Ghendrih, A. Herrmann, J. Hu, S. Krasheninnikov, G. Kirnev, A. Kreter, V. Kurnaev, B. LaBombard, S. Lisgo, T. Nakano, N. Ohno, H. D. Pacher, J. Paley, Y. Pan, G. Pautasso, V. Philipps, V. Rohde, D. Rudakov, P. Stangeby, S. Takamura, T. Tanabe, Y. Yang, and S. Zhu, Nuclear Fusion 47, 1189 (2007);
4.U. Samm, Transactions of Fusion Science and Technology 53, 223 (2008);
4.G. Federici, C. H. Skinner, J. N. Brooks, J. P. Coad, C. Grisolia, A. A. Haasz, A. Hassanein, V. Philipps, C. S. Pitcher, J. Roth, W. R. Wampler, and D. G. Whyte, Nuclear Fusion 41(12R), 1967 (2001).
5. M. A. Abdou, A. Ying, N. Morley, K. Gulec, S. Smolentsev, M. Kotschenreuther, S. Malang, S. Zinkle, T. Rognlien, P. Fogarty, B. Nelson, R. Nygren, K. McCarthy, M. Z. Youssef, N. Ghoniem, D. Sze, C. Wong, M. Sawan, H. Khater, R. Woolley, R. Mattas, R. Moir, S. Sharafat, J. Brooks, A. Hassanein, D. Petti, M. Tillack, M. Ulrickson, and T. Uchimoto, Fusion Engineering and Design 54(2), 181 (2001);
5.R. W. Moir, Nuclear Fusion 37(4), 557 (1997);
5.G. L. Jackson, J. Winter, T. S. Taylor, K. H. Burrell, J. C. DeBoo, C. M. Greenfield, R. J. Groebner, T. Hodapp, K. Holtrop et al., Physical Review Letters 67(22), 3098 (1991);
5.B. Lipschultz, D. A. Pappas, B. LaBombard, J. E. Rice, D. Smith, and S. J. Wukitch, Nuclear Fusion 41(5), 585 (2001);
5.U. Samm, P. Bogen, G. Esser, J. D. Hey, E. Hintz, A. Huber, L. Koenen, Y. T. Lie, P. Mertens et al., Journal of Nuclear Materials 220–222, 25 (1995);
5.H. G. Esser, S. J. Fielding, S. D. Hanks, P. C. Johnson, A. Kislyakov, and J. Winter, Journal of Nuclear Materials 186(3), 217 (1992);
5.H. G. Esser, J. Winter, V. Philipps, H. B. Reimer, J. Von Seggern, P. Wienhold et al., Journal of Nuclear Materials 196–198, 231 (1992).
6. M. R. Wade, J. T. Hogan, S. L. Allen, N. H. Brooks, D. N. Hill, R. Maingi, M. J. Schaffer, J. G. Watkins, D. G. Whyte, R. D. Wood, and W. P. West, Nuclear Fusion 38(12), 1839 (1998);
6.J. A. Goetz, B. LaBombard, B. Lipschultz, C. S. Pitcher, J. L. Terry, C. Boswell, S. Gangadhara, D. Pappas, J. Weaver, B. Welch, R. L. Boivin, P. Bonoli, C. Fiore, R. Granetz, M. Greenwald, A. Hubbard, I. Hutchinson, J. Irby, E. Marmar, D. Mossessian, M. Porkolab, J. Rice, W. L. Rowan, G. Schilling, J. Snipes, Y. Takase, S. Wolfe, and S. Wukitch, Physics of Plasmas 6(5), 1899 (1999);
6.J. A. Goetz, B. Lipschultz, C. S. Pitcher, J. L. Terry, P. T. Bonoli, J. E. Rice, and S. J. Wukitch, Journal of Nuclear Materials 266–269, 354 (1999);
6.J. Rapp, P. Monier-Garbet, P. Andrew, P. Dumortier, T. Eich, W. Fundamenski, M. von Hellermann, J. Hogan, L. C. Ingesson, S. Jachmich, H. R. Koslowski, A. Loarte, G. Maddison, G. F. Matthews, D. C. McDonald, A. Messiaen, J. Ongena, V. Parail, V. Philipps, G. Saibene, R. Sartori, and B. Unterberg, Fusion Energy, 1021 (2003);
6.H. D. Pacher, A. S. Kukushkin, G. W. Pacher, V. Kotov, G. Janeschitz, D. Reiter, and D. P. Coster, Journal of Nuclear Materials 390–391, 259 (2009).
7. A. Ito and H. Nakamura, J. Plasma Phys. 72(6), 805 (2006).
8. S. J. Stuart, P. S. Krstic, T. A. Embry, and C. O. Reinhold, Nuclear Instruments and Methods in Physics Research B 255, 202 (2007);
8.A. Ito and H. Nakamura, Molecular Simulation 33(1–2), 121 (2007);
8.A. Ito and H. Nakamura, Thin Solid Films 516(19), 6553 (2008);
8.A. Ito, Y. Wang, S. Irle, K. Morokuma, and H. Nakamura, J. Nucl. Mat. 390–391, 183 (2009);
8.A. Ito, K. Ohya, K. Inai, and H. Nakamura, Contributions to Plasma Physics 50(3–5), 464 (2010);
8.K. Ohya, N. Mohara, K. Inai, A. Ito, H. Nakamura, A. Kirschner, and D. Borodin, Fusion Engineering and Design 85, 1167 (2010);
8.S. Saito, A. M. Ito, A. Takayama, T. Kenmotsu, and H. Nakamura, Journal of Nuclear Materials 415, 5208 (2011);
8.P. Traeskelin, O. Saresoja, and K. Nordlund, Journal of Nuclear Materials 375, 270 (2008);
8.J. Marian, L. A. Zepeda-Rutz, G. H. Gilmer, E. M. Bringa, and T. Rognlien, Phys. Scr. T124, 65 (2006).
9. A. Ito and H. Nakamura, Communications in Computational Physics 4(3), 592 (2008).
10. K. Nordlund, E. Salonen, S. Krasheninnikov, and J. Keinonen, Pure Appl. Chem. 78(6), 1203 (2006).
11. P. Traeskelin, K. Nordlund, and J. Keinonen, Journal of Nuclear Materials 357, 1 (2006).
12. P. S. Krstic, C. O. Reinhold, and S. J. Stuart, New Journal of Physics 9, 2091 (2007).
13. X. Sha and B. Jackson, Surface Science 496, 318 (2002);
13.Y. Ferro, A. Jelea, F. Marinelli, C. Brosset, and A. Allouche, Journal of Nuclear Materials 337–339, 897 (2005).
14. X. Sha, B. Jackson, D. Lemoine, and B. Lepetit, Journal of Chemical Physics 122, 0147091 (2005);
14.Y. Ferro, A. Allouche, F. Marinelli, and C. Brosset, Surface Science 559, 158 (2004);
14.A. Jelea, F. Marinelli, Y. Ferro, A. Allouche, and C. Brosset, Carbon 42, 3189 (2004);
14.S. Morisset, Y. Ferro, and A. Allouche, Chemical Physics Letters 477, 225 (2009);
14.R. C. Ehemann, P. S. Krstic, J. Dadras, P. R. C. Kent, and J. Jakowski, Nanoscale Research Letters 7, 1981 (2012).
15. Y. Ferro, C. Brosser, and A. Allouche, Physica Scripta T108, 76 (2004).
16. S. E. Huber, T. Hell, M. Probst, and A. Ostermann, XVIIIth Symposium on Atomic, Cluster and Surface Physics (SASP 2012), edited by M. Lewerenz, O. Dutuit, R. Marquardt, (Innsbruck University Press (IUP), Innsbruck, 2012);
16.S. E. Huber, T. Hell, M. Probst, and A. Ostermann, Theoretical Chemistry Accounts 132, 1337 (2013).
17. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).
18. K. Jug and T. Bredow, Journal of Computational Chemistry 25, 1551 (2004).
19. V. H. Crespi, L. X. Benedict, M. L. Cohen, and S. G. Louie, Physical Review B 53(20), 13303 (1996).
20. A. Ishi, M. Yamamoto, H. Asano, and K. Fujiwara, J. Phys.: Conference Series 100 (2008);
20.L. Sheng, Y. Ono, and T. Taketsugu, Journal of Physical Chemistry C 114 (2010).
21. A. Becke, Journal of Chemical Physics 98(7), 5648 (1993).
22. C. Adamo and V. Barone, Journal of Chemical Physics 110(13), 6158 (1999).
23. J. Chai and M. Head-Gordon, Physical Chemistry Chemical Physics 10, 6615 (2008).
24.“See supplemental material at for comparisons of energy barriers with respect to the use of different basis sets as well as to the use of different functionals.” [Supplementary Material]
25. J. S. Birkley, J. A. Pople, and W. J. Hehre, Journal of the American Chemical Society 102 (1980).
26. R. Ditchfield, W. J. Hehre, and J. A. Pople, The Journal of Chemical Physics 54, 724 (1971).
27. U. D. Priyakumar and G. N. Sastry, Journal of Physical Chemistry A 105, 4488 (2001).
28. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1 (Gaussian, Inc., Wallingford CT, 2009).
29. J. P. Perdew, K. Burke, and Y. Wang, Physical Review B: Condensed Matter and Materials Physics 54, 16533 (1996).
30. K. Rytkoenen, J. Akola, and M. Manninen, Physical Review B: Condensed Matter and Materials Physics 75, 0754011 (2007).
31. F. Valencia, A. H. Romero, F. Ancilotto, and P. L. Silvestrelli, Journal of Physical Chemistry B 110, 14832 (2006).
32. Z. H. Zhu and G. Q. Lu, Langmuir 20, 10751 (2004).
33. L. Jeloaica and V. Sidis, Chemical Physics Letters 300, 157 (1999).
34. T. Zecho, A. Guettler, X. Sha, B. Jackson, and J. Kueppers, Journal of Chemical Physics 117, 8486 (2002).

Data & Media loading...


Article metrics loading...



Energetic and geometric aspects of the permeation of the atoms hydrogen to neon neutral atoms through graphene sheets are investigated by investigating the associated energy barriers and sheet deformations. Density functional theory calculations on cluster models, where graphene is modeled by planar polycyclic aromatic hydrocarbons (PAHs), provide the energies and geometries. Particularities of our systems, such as convergence of both energy barriers and deformation curves with increasing size of the PAHs, are discussed. Three different interaction regimes, adiabatic, planar and vertical, are investigated by enforcing different geometrical constraints. The adiabatic energy barriers range from 5 eV for hydrogen to 20 eV for neon. We find that the permeation of oxygen and carbon into graphene is facilitated by temporary chemical bonding while for other, in principle reactive atoms, it is not. We discuss implications of our results for modeling chemical sputtering of graphite.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd