1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Permeation of low-Z atoms through carbon sheets: Density functional theory study on energy barriers and deformation effects
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/12/10.1063/1.4842495
1.
1. E. Gogolides, V. Constantoudis, G. Kokkoris, D. Kontziampasis, K. Tsougeni, G. Boulousis, M. Vlachopoulou, and A. Tserepi, Journal of Physics D - Applied Physics 44(17), 174021 (2011).
http://dx.doi.org/10.1088/0022-3727/44/17/174021
2.
2. K. H. Becker, K. H. Schoenbach, and J. G. Eden, Journal of Physics D - Applied Physics 39(3), R55 (2006).
http://dx.doi.org/10.1088/0022-3727/39/3/R01
3.
3. J. Roth, E. Tsitrone, and A. Loarte, Journal of Physics: Conference Series 100 (2008).
http://dx.doi.org/10.1088/1742-6596/100/6/062003
4.
4. V. Philipps, Physica Scripta T123, 24 (2006);
http://dx.doi.org/10.1088/0031-8949/2006/T123/004
4.B. Lipschultz, X. Bonnin, G. Counsell, A. Kallenbach, A. Kukushkin, K. Krieger, A. Leonard, A. Loarte, R. Neu, R. A. Pitts, T. Rognlien, J. Roth, C. H. Skinner, J. L. Terry, E. Tsitrone, D. Whyte, S. Zweben, N. Asakura, D. Coster, R. Doerner, R. Dux, G. Federici, M. Fenstermacher, W. Fundamenski, P. Ghendrih, A. Herrmann, J. Hu, S. Krasheninnikov, G. Kirnev, A. Kreter, V. Kurnaev, B. LaBombard, S. Lisgo, T. Nakano, N. Ohno, H. D. Pacher, J. Paley, Y. Pan, G. Pautasso, V. Philipps, V. Rohde, D. Rudakov, P. Stangeby, S. Takamura, T. Tanabe, Y. Yang, and S. Zhu, Nuclear Fusion 47, 1189 (2007);
http://dx.doi.org/10.1088/0029-5515/47/9/016
4.U. Samm, Transactions of Fusion Science and Technology 53, 223 (2008);
4.G. Federici, C. H. Skinner, J. N. Brooks, J. P. Coad, C. Grisolia, A. A. Haasz, A. Hassanein, V. Philipps, C. S. Pitcher, J. Roth, W. R. Wampler, and D. G. Whyte, Nuclear Fusion 41(12R), 1967 (2001).
http://dx.doi.org/10.1088/0029-5515/41/12/218
5.
5. M. A. Abdou, A. Ying, N. Morley, K. Gulec, S. Smolentsev, M. Kotschenreuther, S. Malang, S. Zinkle, T. Rognlien, P. Fogarty, B. Nelson, R. Nygren, K. McCarthy, M. Z. Youssef, N. Ghoniem, D. Sze, C. Wong, M. Sawan, H. Khater, R. Woolley, R. Mattas, R. Moir, S. Sharafat, J. Brooks, A. Hassanein, D. Petti, M. Tillack, M. Ulrickson, and T. Uchimoto, Fusion Engineering and Design 54(2), 181 (2001);
http://dx.doi.org/10.1016/S0920-3796(00)00433-6
5.R. W. Moir, Nuclear Fusion 37(4), 557 (1997);
http://dx.doi.org/10.1088/0029-5515/37/4/I13
5.G. L. Jackson, J. Winter, T. S. Taylor, K. H. Burrell, J. C. DeBoo, C. M. Greenfield, R. J. Groebner, T. Hodapp, K. Holtrop et al., Physical Review Letters 67(22), 3098 (1991);
http://dx.doi.org/10.1103/PhysRevLett.67.3098
5.B. Lipschultz, D. A. Pappas, B. LaBombard, J. E. Rice, D. Smith, and S. J. Wukitch, Nuclear Fusion 41(5), 585 (2001);
http://dx.doi.org/10.1088/0029-5515/41/5/311
5.U. Samm, P. Bogen, G. Esser, J. D. Hey, E. Hintz, A. Huber, L. Koenen, Y. T. Lie, P. Mertens et al., Journal of Nuclear Materials 220–222, 25 (1995);
http://dx.doi.org/10.1016/0022-3115(94)00444-7
5.H. G. Esser, S. J. Fielding, S. D. Hanks, P. C. Johnson, A. Kislyakov, and J. Winter, Journal of Nuclear Materials 186(3), 217 (1992);
http://dx.doi.org/10.1016/0022-3115(92)90339-M
5.H. G. Esser, J. Winter, V. Philipps, H. B. Reimer, J. Von Seggern, P. Wienhold et al., Journal of Nuclear Materials 196–198, 231 (1992).
http://dx.doi.org/10.1016/S0022-3115(06)80037-1
6.
6. M. R. Wade, J. T. Hogan, S. L. Allen, N. H. Brooks, D. N. Hill, R. Maingi, M. J. Schaffer, J. G. Watkins, D. G. Whyte, R. D. Wood, and W. P. West, Nuclear Fusion 38(12), 1839 (1998);
http://dx.doi.org/10.1088/0029-5515/38/12/309
6.J. A. Goetz, B. LaBombard, B. Lipschultz, C. S. Pitcher, J. L. Terry, C. Boswell, S. Gangadhara, D. Pappas, J. Weaver, B. Welch, R. L. Boivin, P. Bonoli, C. Fiore, R. Granetz, M. Greenwald, A. Hubbard, I. Hutchinson, J. Irby, E. Marmar, D. Mossessian, M. Porkolab, J. Rice, W. L. Rowan, G. Schilling, J. Snipes, Y. Takase, S. Wolfe, and S. Wukitch, Physics of Plasmas 6(5), 1899 (1999);
http://dx.doi.org/10.1063/1.873447
6.J. A. Goetz, B. Lipschultz, C. S. Pitcher, J. L. Terry, P. T. Bonoli, J. E. Rice, and S. J. Wukitch, Journal of Nuclear Materials 266–269, 354 (1999);
http://dx.doi.org/10.1016/S0022-3115(98)00582-0
6.J. Rapp, P. Monier-Garbet, P. Andrew, P. Dumortier, T. Eich, W. Fundamenski, M. von Hellermann, J. Hogan, L. C. Ingesson, S. Jachmich, H. R. Koslowski, A. Loarte, G. Maddison, G. F. Matthews, D. C. McDonald, A. Messiaen, J. Ongena, V. Parail, V. Philipps, G. Saibene, R. Sartori, and B. Unterberg, Fusion Energy, 1021 (2003);
6.H. D. Pacher, A. S. Kukushkin, G. W. Pacher, V. Kotov, G. Janeschitz, D. Reiter, and D. P. Coster, Journal of Nuclear Materials 390–391, 259 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.01.089
7.
7. A. Ito and H. Nakamura, J. Plasma Phys. 72(6), 805 (2006).
http://dx.doi.org/10.1017/S0022377806005289
8.
8. S. J. Stuart, P. S. Krstic, T. A. Embry, and C. O. Reinhold, Nuclear Instruments and Methods in Physics Research B 255, 202 (2007);
http://dx.doi.org/10.1016/j.nimb.2006.11.078
8.A. Ito and H. Nakamura, Molecular Simulation 33(1–2), 121 (2007);
http://dx.doi.org/10.1080/08927020601078471
8.A. Ito and H. Nakamura, Thin Solid Films 516(19), 6553 (2008);
http://dx.doi.org/10.1016/j.tsf.2007.11.091
8.A. Ito, Y. Wang, S. Irle, K. Morokuma, and H. Nakamura, J. Nucl. Mat. 390–391, 183 (2009);
http://dx.doi.org/10.1016/j.jnucmat.2009.01.163
8.A. Ito, K. Ohya, K. Inai, and H. Nakamura, Contributions to Plasma Physics 50(3–5), 464 (2010);
http://dx.doi.org/10.1002/ctpp.201010074
8.K. Ohya, N. Mohara, K. Inai, A. Ito, H. Nakamura, A. Kirschner, and D. Borodin, Fusion Engineering and Design 85, 1167 (2010);
http://dx.doi.org/10.1016/j.fusengdes.2010.02.033
8.S. Saito, A. M. Ito, A. Takayama, T. Kenmotsu, and H. Nakamura, Journal of Nuclear Materials 415, 5208 (2011);
http://dx.doi.org/10.1016/j.jnucmat.2010.12.233
8.P. Traeskelin, O. Saresoja, and K. Nordlund, Journal of Nuclear Materials 375, 270 (2008);
http://dx.doi.org/10.1016/j.jnucmat.2007.11.012
8.J. Marian, L. A. Zepeda-Rutz, G. H. Gilmer, E. M. Bringa, and T. Rognlien, Phys. Scr. T124, 65 (2006).
http://dx.doi.org/10.1088/0031-8949/2006/T124/013
9.
9. A. Ito and H. Nakamura, Communications in Computational Physics 4(3), 592 (2008).
10.
10. K. Nordlund, E. Salonen, S. Krasheninnikov, and J. Keinonen, Pure Appl. Chem. 78(6), 1203 (2006).
http://dx.doi.org/10.1351/pac200678061203
11.
11. P. Traeskelin, K. Nordlund, and J. Keinonen, Journal of Nuclear Materials 357, 1 (2006).
http://dx.doi.org/10.1016/j.jnucmat.2005.12.004
12.
12. P. S. Krstic, C. O. Reinhold, and S. J. Stuart, New Journal of Physics 9, 2091 (2007).
http://dx.doi.org/10.1088/1367-2630/9/7/209
13.
13. X. Sha and B. Jackson, Surface Science 496, 318 (2002);
http://dx.doi.org/10.1016/S0039-6028(01)01602-8
13.Y. Ferro, A. Jelea, F. Marinelli, C. Brosset, and A. Allouche, Journal of Nuclear Materials 337–339, 897 (2005).
http://dx.doi.org/10.1016/j.jnucmat.2004.09.059
14.
14. X. Sha, B. Jackson, D. Lemoine, and B. Lepetit, Journal of Chemical Physics 122, 0147091 (2005);
http://dx.doi.org/10.1063/1.1827601
14.Y. Ferro, A. Allouche, F. Marinelli, and C. Brosset, Surface Science 559, 158 (2004);
http://dx.doi.org/10.1016/j.susc.2004.03.047
14.A. Jelea, F. Marinelli, Y. Ferro, A. Allouche, and C. Brosset, Carbon 42, 3189 (2004);
http://dx.doi.org/10.1016/j.carbon.2004.08.001
14.S. Morisset, Y. Ferro, and A. Allouche, Chemical Physics Letters 477, 225 (2009);
http://dx.doi.org/10.1016/j.cplett.2009.06.082
14.R. C. Ehemann, P. S. Krstic, J. Dadras, P. R. C. Kent, and J. Jakowski, Nanoscale Research Letters 7, 1981 (2012).
http://dx.doi.org/10.1186/1556-276X-7-198
15.
15. Y. Ferro, C. Brosser, and A. Allouche, Physica Scripta T108, 76 (2004).
http://dx.doi.org/10.1238/Physica.Topical.108a00076
16.
16. S. E. Huber, T. Hell, M. Probst, and A. Ostermann, XVIIIth Symposium on Atomic, Cluster and Surface Physics (SASP 2012), edited by M. Lewerenz, O. Dutuit, R. Marquardt, (Innsbruck University Press (IUP), Innsbruck, 2012);
16.S. E. Huber, T. Hell, M. Probst, and A. Ostermann, Theoretical Chemistry Accounts 132, 1337 (2013).
http://dx.doi.org/10.1007/s00214-013-1337-9
17.
17. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).
http://dx.doi.org/10.1088/0953-8984/14/4/312
18.
18. K. Jug and T. Bredow, Journal of Computational Chemistry 25, 1551 (2004).
http://dx.doi.org/10.1002/jcc.20080
19.
19. V. H. Crespi, L. X. Benedict, M. L. Cohen, and S. G. Louie, Physical Review B 53(20), 13303 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.R13303
20.
20. A. Ishi, M. Yamamoto, H. Asano, and K. Fujiwara, J. Phys.: Conference Series 100 (2008);
20.L. Sheng, Y. Ono, and T. Taketsugu, Journal of Physical Chemistry C 114 (2010).
21.
21. A. Becke, Journal of Chemical Physics 98(7), 5648 (1993).
http://dx.doi.org/10.1063/1.464913
22.
22. C. Adamo and V. Barone, Journal of Chemical Physics 110(13), 6158 (1999).
http://dx.doi.org/10.1063/1.478522
23.
23. J. Chai and M. Head-Gordon, Physical Chemistry Chemical Physics 10, 6615 (2008).
http://dx.doi.org/10.1039/b810189b
24.
24.“See supplemental material at http://dx.doi.org/10.1063/1.4842495 for comparisons of energy barriers with respect to the use of different basis sets as well as to the use of different functionals.” [Supplementary Material]
25.
25. J. S. Birkley, J. A. Pople, and W. J. Hehre, Journal of the American Chemical Society 102 (1980).
26.
26. R. Ditchfield, W. J. Hehre, and J. A. Pople, The Journal of Chemical Physics 54, 724 (1971).
http://dx.doi.org/10.1063/1.1674902
27.
27. U. D. Priyakumar and G. N. Sastry, Journal of Physical Chemistry A 105, 4488 (2001).
http://dx.doi.org/10.1021/jp0037549
28.
28. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1 (Gaussian, Inc., Wallingford CT, 2009).
29.
29. J. P. Perdew, K. Burke, and Y. Wang, Physical Review B: Condensed Matter and Materials Physics 54, 16533 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.16533
30.
30. K. Rytkoenen, J. Akola, and M. Manninen, Physical Review B: Condensed Matter and Materials Physics 75, 0754011 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.075401
31.
31. F. Valencia, A. H. Romero, F. Ancilotto, and P. L. Silvestrelli, Journal of Physical Chemistry B 110, 14832 (2006).
http://dx.doi.org/10.1021/jp062126+
32.
32. Z. H. Zhu and G. Q. Lu, Langmuir 20, 10751 (2004).
http://dx.doi.org/10.1021/la040062t
33.
33. L. Jeloaica and V. Sidis, Chemical Physics Letters 300, 157 (1999).
http://dx.doi.org/10.1016/S0009-2614(98)01337-2
34.
34. T. Zecho, A. Guettler, X. Sha, B. Jackson, and J. Kueppers, Journal of Chemical Physics 117, 8486 (2002).
http://dx.doi.org/10.1063/1.1511729
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/12/10.1063/1.4842495
Loading
/content/aip/journal/adva/3/12/10.1063/1.4842495
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/12/10.1063/1.4842495
2013-12-04
2014-07-22

Abstract

Energetic and geometric aspects of the permeation of the atoms hydrogen to neon neutral atoms through graphene sheets are investigated by investigating the associated energy barriers and sheet deformations. Density functional theory calculations on cluster models, where graphene is modeled by planar polycyclic aromatic hydrocarbons (PAHs), provide the energies and geometries. Particularities of our systems, such as convergence of both energy barriers and deformation curves with increasing size of the PAHs, are discussed. Three different interaction regimes, adiabatic, planar and vertical, are investigated by enforcing different geometrical constraints. The adiabatic energy barriers range from 5 eV for hydrogen to 20 eV for neon. We find that the permeation of oxygen and carbon into graphene is facilitated by temporary chemical bonding while for other, in principle reactive atoms, it is not. We discuss implications of our results for modeling chemical sputtering of graphite.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/12/1.4842495.html;jsessionid=1maik4nhighmd.x-aip-live-06?itemId=/content/aip/journal/adva/3/12/10.1063/1.4842495&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Permeation of low-Z atoms through carbon sheets: Density functional theory study on energy barriers and deformation effects
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/12/10.1063/1.4842495
10.1063/1.4842495
SEARCH_EXPAND_ITEM