Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. Xu, Y. Lu, Y. Xie, and Y. Liu, Mater. Des. 30, 1704 (2009).
2. S. Tüzemen, E. Gür, T. Yıldırım, G. Xiong, and R. T. Williams, J. Appl. Phys. 100, 103513 (2006).
3. A. Baltakesmez, S. Tekmen, and S. Tüzemen, J. Appl. Phys. 110, 054502 (2011).
4. I. S. Jeong, J. H. Kim, and S. Im, Appl. Phys. Lett. 83, 2946 (2003).
5. L. F. Dong, Z. L. Cui, and Z. K. Zhang, Nanostruct. Mater. 8, 815 (1997).
6. H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, Appl. Phys. Lett. 91, 181112 (2007)
7. O. Lupan, T. Pauporté, and B. Viana, Advanced Materials 22, 3298 (2010).
8. Z. Zang, A. Nakamura, and J. Temmyo, Materials Letters 92, 188 (2013).
9. S. Tüzemen and E. Gür, Opt. Mater. 30, 292 (2007).
10. N. J. Kim, S. Choi, H. J. Lee, and K. J. Kim, Curr. Appl. Phys. 9, 643 (2009).
11. J. Z. Zhao, H. W. Liang, J. C. Sun, J. M. Bian, Q. J. Feng, L. Z. Hu, H. Q. Zhang, X. P. Liang, Y. M. Luo, and G. T. Du, J. Phys. D: Appl. Phys. 41, 195110 (2008).
12. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
13. D. K. Mynbaev, L. L. Scheiner, Light Emitting Diodes (LEDs),
14. A. I. Martinez and D. R. Acosta, Thin Solid Films 483, 107 (2005).
15. N. J. Kim, S. Choi, H. J. Lee, and K. J. Kim, Curr. Appl. Phys. 9, 643 (2009).
16. S. P. Chang, R. W. Chuang, S. J. Chang, Y. Z. Chiou, C. Y. Lu, T. K. Lin, C. F. Kuo, and H. M. Chang, IEEE. J. Sel. Top. Quant. 14, 1058 (2008).
17. M. K. Ryu, S. H. Lee, M. S. Jang, G. N. Panin, and T. W. Kang, J. Appl. Phys. 92, 154 (2002).
18. S. Tekmen, E. Gür, H. Asil, K. Çınar, C. Coşkun, and S. Tüzemen, Phys. Status Solidi A 207, 1464 (2010).
19. O. Lupan, L. Chow, L. K. Ono, B. R. Cuenya, G. Chai, H. Khallaf, S. Park, and A. Schulte, J. Phys. Chem. C 114, 12401 (2010).
20. E. M. Bachari, G. Baud, S. B. Amor, and M. Jacquet, Thin Solid Films 348, 165 (1999).
21. J. S. Wellings, N. B. Chaure, S. N. Heavens, and I. M. Dharmadasa, Thin Solid Films 516, 3893 (2008).
22. F. K. Lotgering, J. Inorg. And Nucl. Chem. 9, 113 (1959).
23. B. Ma, G. K. L. Goh, J. Ma, and T. J. White, J. Electrochem. Soc. 154(10), D557 (2007).
24. M. P. Thi, H. Hemery, O. Durand, and H. Dammak, Japanese Journal of Applied Physics 43, 8190 (2004).
25. E. Gür, H. Asıl, K. Çınar, C. Coşkun, S. Tüzemen, K. Meral, Y. Onganer, and K. Şerifoğlu, J. Vac. Sci. Technol. B 27(5), 2232 (2009).
26. E. W. Bohannan, L-Y. Huang, F. S. Miller, M. G. Shumsky, and J. A. Switzer, Langmuir 15, 813 (1999).
27. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, Appl. Phys. Lett. 78, 407 (2001).
28. W. E. Mahmoud and T. Al-Harbi, Journal of Crystal Growth 327, 52 (2011).
29. J. Xie, P. Li, Y. Li, Y. Wang, and Y. Wei, Matter. Chem. Phys. 114, 943 (2009).
30. X. Wang, J. Song, P. Li, J. H. Ryou, R. D. Dupuis, C. J. Summers, and Z. L. Wang, J. Am. Chem. Soc. 127, 7920 (2005).
31. H. Q. Le, S. K. Lim, G. K. L. Goh, S. J. Chua, N. S. S. Ang, and W. Liu, Appl Phys B 100, 705710 (2010).
32. Y. Z. Li, X. M. Li, C. Yang, X. D. Gao, and Y. He, J. Phys. D: Appl. Phys. 43, 285101 (2010).
33. D. H. Zhang, Z. Y. Xue, and Q. P. Wang, J. Phys. D: Appl. Phys. 35, 28372840 (2002)
34. Lukas Schmidt-Mende and Judith L. MacManus-Driscoll, Materialstoday 10(5), 4048 (2007).
35. Y. L. Liu, Y. C. Liu, H. Yang, W. B. Wang, J. G. Ma, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, J. Phys. D: Appl. Phys. 36, 2705 (2003).
36. S. Ju, S. Kim, S. Mohammadi, D. B. Janes, Y. G. Ha, A. Facchetti, and T. J. Marks, Appl. Phys. Lett. 92, 022104 (2008).
37. G. W. Gobeli, and F. G. Allen, Phys. Rev. 137, 245 (1965).
38. S. Xu, C. Xu, Y. Liu, Y. Hu, R. Yang, Q. Yang, J. Ryou, H. J. Kim, Z. Lochner, S. Choi, R. Dupuis, and Z. L. Wang, Adv. Mater. 22, 4749 (2010).
39. O. Lupan, T. Pauporté, T. L. Bahers, B. Viana, and I. Ciofini, Adv. Funct. Mater. 21, 3564 (2011).
40. L. S. Vlasenko and G. D. Watkins, Phys. Rev. B 71, 125210 (2005).
41. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, J. Appl. Phys. 105, 013502 (2009).
42. H. Zhao, J. Huang, Y. Chen, J. H. Yum, Y. Wang, F. Zhou, F. Xue, and J. C. Lee, Appl. Phys. Lett. 95, 253501 (2009).
43. O. Lupan, T. Pauporte, B. Viana, V. V. Ursaki, I. M. Tiginyanu, and V. Sontea, L. Chow, Journal of Nanoelectronic and Optoelectronic 7, 712 (2012).
44. O. Lupan, G. Chai, and L. Chow, Microelectronics Journal 38, 1211 (2007).
45. O. Lupan, L. Chow, G. Chai, L. Chernyak, O. L. Tirpak, and H. Heinrich, Physica Status Solidi (a) 205(11), 2673 (2008).
46. B. Kiliç, L. Wang, O. Ozdemir, M. Lu, and S. Tüzemen, Journal of Nanoscience and Nanotechnology 13, 333 (2013).
47. B. Kılıc, E. Gür, S. Tüzemen, Journal of Nanomaterials, Volume 2012, Article ID 474656.

Data & Media loading...


Article metrics loading...



In this study, n-ZnO thin films were electrochemically deposited on p-GaAs:Zn substrates. The XRD results of ZnO thin films deposited on p-GaAs:Zn substrates at potentials varied from −0.9 V to −1.2 V show a strong c-axis (002) orientation and homogeneity. The current-voltage characteristics exhibit rectification, proving a low turn-on voltage and an ideality factor of 4.71. The n-ZnO/p-GaAs heterostructures show blue-white electroluminescence (EL) emission, which is composed of broad emission bands. In addition to these broad peaks, stimulated emission also appear on the top of the spectra due to the multiple reflections from the mirror like surfaces of ZnO-ZnO and ZnO-GaAs interfaces. Besides, three broad photoluminescence (PL) emission peaks have also been observed peaking at respectively around 3.36 eV, 3.28 eV and 3.07 eV generally attributed to the near bandedge emission, the residual donor level and deep level emission due to the localized defects, respectively.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd