Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/12/10.1063/1.4842635
1.
1. F. Xu, Y. Lu, Y. Xie, and Y. Liu, Mater. Des. 30, 1704 (2009).
http://dx.doi.org/10.1016/j.matdes.2008.07.024
2.
2. S. Tüzemen, E. Gür, T. Yıldırım, G. Xiong, and R. T. Williams, J. Appl. Phys. 100, 103513 (2006).
http://dx.doi.org/10.1063/1.2386926
3.
3. A. Baltakesmez, S. Tekmen, and S. Tüzemen, J. Appl. Phys. 110, 054502 (2011).
http://dx.doi.org/10.1063/1.3627247
4.
4. I. S. Jeong, J. H. Kim, and S. Im, Appl. Phys. Lett. 83, 2946 (2003).
http://dx.doi.org/10.1063/1.1616663
5.
5. L. F. Dong, Z. L. Cui, and Z. K. Zhang, Nanostruct. Mater. 8, 815 (1997).
http://dx.doi.org/10.1016/S0965-9773(98)00005-1
6.
6. H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, Appl. Phys. Lett. 91, 181112 (2007)
http://dx.doi.org/10.1063/1.2805073
7.
7. O. Lupan, T. Pauporté, and B. Viana, Advanced Materials 22, 3298 (2010).
http://dx.doi.org/10.1002/adma.201000611
8.
8. Z. Zang, A. Nakamura, and J. Temmyo, Materials Letters 92, 188 (2013).
http://dx.doi.org/10.1016/j.matlet.2012.10.083
9.
9. S. Tüzemen and E. Gür, Opt. Mater. 30, 292 (2007).
http://dx.doi.org/10.1016/j.optmat.2006.10.031
10.
10. N. J. Kim, S. Choi, H. J. Lee, and K. J. Kim, Curr. Appl. Phys. 9, 643 (2009).
http://dx.doi.org/10.1016/j.cap.2008.04.015
11.
11. J. Z. Zhao, H. W. Liang, J. C. Sun, J. M. Bian, Q. J. Feng, L. Z. Hu, H. Q. Zhang, X. P. Liang, Y. M. Luo, and G. T. Du, J. Phys. D: Appl. Phys. 41, 195110 (2008).
http://dx.doi.org/10.1088/0022-3727/41/19/195110
12.
12. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
13.
13. D. K. Mynbaev, L. L. Scheiner, Light Emitting Diodes (LEDs), http://zone.ni.com/devzone/cda/ph/p/id/130.
14.
14. A. I. Martinez and D. R. Acosta, Thin Solid Films 483, 107 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.12.047
15.
15. N. J. Kim, S. Choi, H. J. Lee, and K. J. Kim, Curr. Appl. Phys. 9, 643 (2009).
http://dx.doi.org/10.1016/j.cap.2008.04.015
16.
16. S. P. Chang, R. W. Chuang, S. J. Chang, Y. Z. Chiou, C. Y. Lu, T. K. Lin, C. F. Kuo, and H. M. Chang, IEEE. J. Sel. Top. Quant. 14, 1058 (2008).
http://dx.doi.org/10.1109/JSTQE.2008.920311
17.
17. M. K. Ryu, S. H. Lee, M. S. Jang, G. N. Panin, and T. W. Kang, J. Appl. Phys. 92, 154 (2002).
http://dx.doi.org/10.1063/1.1483371
18.
18. S. Tekmen, E. Gür, H. Asil, K. Çınar, C. Coşkun, and S. Tüzemen, Phys. Status Solidi A 207, 1464 (2010).
http://dx.doi.org/10.1002/pssa.200925488
19.
19. O. Lupan, L. Chow, L. K. Ono, B. R. Cuenya, G. Chai, H. Khallaf, S. Park, and A. Schulte, J. Phys. Chem. C 114, 12401 (2010).
http://dx.doi.org/10.1021/jp910263n
20.
20. E. M. Bachari, G. Baud, S. B. Amor, and M. Jacquet, Thin Solid Films 348, 165 (1999).
http://dx.doi.org/10.1016/S0040-6090(99)00060-7
21.
21. J. S. Wellings, N. B. Chaure, S. N. Heavens, and I. M. Dharmadasa, Thin Solid Films 516, 3893 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.07.156
22.
22. F. K. Lotgering, J. Inorg. And Nucl. Chem. 9, 113 (1959).
http://dx.doi.org/10.1016/0022-1902(59)80070-1
23.
23. B. Ma, G. K. L. Goh, J. Ma, and T. J. White, J. Electrochem. Soc. 154(10), D557 (2007).
http://dx.doi.org/10.1149/1.2769828
24.
24. M. P. Thi, H. Hemery, O. Durand, and H. Dammak, Japanese Journal of Applied Physics 43, 8190 (2004).
http://dx.doi.org/10.1143/JJAP.43.8190
25.
25. E. Gür, H. Asıl, K. Çınar, C. Coşkun, S. Tüzemen, K. Meral, Y. Onganer, and K. Şerifoğlu, J. Vac. Sci. Technol. B 27(5), 2232 (2009).
http://dx.doi.org/10.1116/1.3222865
26.
26. E. W. Bohannan, L-Y. Huang, F. S. Miller, M. G. Shumsky, and J. A. Switzer, Langmuir 15, 813 (1999).
http://dx.doi.org/10.1021/la980825a
27.
27. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, Appl. Phys. Lett. 78, 407 (2001).
http://dx.doi.org/10.1063/1.1342050
28.
28. W. E. Mahmoud and T. Al-Harbi, Journal of Crystal Growth 327, 52 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.05.003
29.
29. J. Xie, P. Li, Y. Li, Y. Wang, and Y. Wei, Matter. Chem. Phys. 114, 943 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2008.11.007
30.
30. X. Wang, J. Song, P. Li, J. H. Ryou, R. D. Dupuis, C. J. Summers, and Z. L. Wang, J. Am. Chem. Soc. 127, 7920 (2005).
http://dx.doi.org/10.1021/ja050807x
31.
31. H. Q. Le, S. K. Lim, G. K. L. Goh, S. J. Chua, N. S. S. Ang, and W. Liu, Appl Phys B 100, 705710 (2010).
http://dx.doi.org/10.1007/s00340-010-4190-8
32.
32. Y. Z. Li, X. M. Li, C. Yang, X. D. Gao, and Y. He, J. Phys. D: Appl. Phys. 43, 285101 (2010).
http://dx.doi.org/10.1088/0022-3727/43/28/285101
33.
33. D. H. Zhang, Z. Y. Xue, and Q. P. Wang, J. Phys. D: Appl. Phys. 35, 28372840 (2002)
http://dx.doi.org/10.1088/0022-3727/35/21/321
34.
34. Lukas Schmidt-Mende and Judith L. MacManus-Driscoll, Materialstoday 10(5), 4048 (2007).
35.
35. Y. L. Liu, Y. C. Liu, H. Yang, W. B. Wang, J. G. Ma, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, J. Phys. D: Appl. Phys. 36, 2705 (2003).
http://dx.doi.org/10.1088/0022-3727/36/21/017
36.
36. S. Ju, S. Kim, S. Mohammadi, D. B. Janes, Y. G. Ha, A. Facchetti, and T. J. Marks, Appl. Phys. Lett. 92, 022104 (2008).
http://dx.doi.org/10.1063/1.2830005
37.
37. G. W. Gobeli, and F. G. Allen, Phys. Rev. 137, 245 (1965).
http://dx.doi.org/10.1103/PhysRev.137.A245
38.
38. S. Xu, C. Xu, Y. Liu, Y. Hu, R. Yang, Q. Yang, J. Ryou, H. J. Kim, Z. Lochner, S. Choi, R. Dupuis, and Z. L. Wang, Adv. Mater. 22, 4749 (2010).
http://dx.doi.org/10.1002/adma.201002134
39.
39. O. Lupan, T. Pauporté, T. L. Bahers, B. Viana, and I. Ciofini, Adv. Funct. Mater. 21, 3564 (2011).
http://dx.doi.org/10.1002/adfm.201100258
40.
40. L. S. Vlasenko and G. D. Watkins, Phys. Rev. B 71, 125210 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.125210
41.
41. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, J. Appl. Phys. 105, 013502 (2009).
http://dx.doi.org/10.1063/1.3054175
42.
42. H. Zhao, J. Huang, Y. Chen, J. H. Yum, Y. Wang, F. Zhou, F. Xue, and J. C. Lee, Appl. Phys. Lett. 95, 253501 (2009).
http://dx.doi.org/10.1063/1.3275001
43.
43. O. Lupan, T. Pauporte, B. Viana, V. V. Ursaki, I. M. Tiginyanu, and V. Sontea, L. Chow, Journal of Nanoelectronic and Optoelectronic 7, 712 (2012).
http://dx.doi.org/10.1166/jno.2012.1413
44.
44. O. Lupan, G. Chai, and L. Chow, Microelectronics Journal 38, 1211 (2007).
http://dx.doi.org/10.1016/j.mejo.2007.09.004
45.
45. O. Lupan, L. Chow, G. Chai, L. Chernyak, O. L. Tirpak, and H. Heinrich, Physica Status Solidi (a) 205(11), 2673 (2008).
http://dx.doi.org/10.1002/pssa.200824233
46.
46. B. Kiliç, L. Wang, O. Ozdemir, M. Lu, and S. Tüzemen, Journal of Nanoscience and Nanotechnology 13, 333 (2013).
http://dx.doi.org/10.1166/jnn.2013.6921
47.
47. B. Kılıc, E. Gür, S. Tüzemen, Journal of Nanomaterials, Volume 2012, Article ID 474656.
http://dx.doi.org/10.1155/2012/474656
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/12/10.1063/1.4842635
Loading
/content/aip/journal/adva/3/12/10.1063/1.4842635
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/12/10.1063/1.4842635
2013-12-04
2016-12-04

Abstract

In this study, n-ZnO thin films were electrochemically deposited on p-GaAs:Zn substrates. The XRD results of ZnO thin films deposited on p-GaAs:Zn substrates at potentials varied from −0.9 V to −1.2 V show a strong c-axis (002) orientation and homogeneity. The current-voltage characteristics exhibit rectification, proving a low turn-on voltage and an ideality factor of 4.71. The n-ZnO/p-GaAs heterostructures show blue-white electroluminescence (EL) emission, which is composed of broad emission bands. In addition to these broad peaks, stimulated emission also appear on the top of the spectra due to the multiple reflections from the mirror like surfaces of ZnO-ZnO and ZnO-GaAs interfaces. Besides, three broad photoluminescence (PL) emission peaks have also been observed peaking at respectively around 3.36 eV, 3.28 eV and 3.07 eV generally attributed to the near bandedge emission, the residual donor level and deep level emission due to the localized defects, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/12/1.4842635.html;jsessionid=0J3CMRoxxhGCka-kWANUWN4q.x-aip-live-06?itemId=/content/aip/journal/adva/3/12/10.1063/1.4842635&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/12/10.1063/1.4842635&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/12/10.1063/1.4842635'
Right1,Right2,Right3,