Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Heindl, W. Dorsch, H. P. Strunk, St. G. Müller, R. Eckstein, D. Hofmann, and A. Winnacker, Phys. Rev. Lett. 80, 740 (1998).
2. X. R. Huang, M. Dudley, W. M. Vetter, W. Huang, S. Wang, and C. H. Carter, Jr., Appl. Phys. Lett. 74, 353 (1999).
3. S. Milita, R. Madar, J. Baruchel, M. Anikin, and T. Argunova, Mater. Sci. Eng. B 61-62, 63 (1999).
4. T. S. Argunova, M. Yu. Gutkin, J. H. Je, V. G. Kohn, and E. N. Mokhov, Physics and Technology of Silicon Carbide Devices (Intech Publications, Croatia, 2012), Section 1, Chapter 2, 27.
5. J. Härtwig, J. Baruchel, H. Kuhn, X-R. Huang, M. Dudley, and E. Pernot, Nucl. Instrum. Meth. B 200, 323 (2003).
6. D. Nakamura, S. Yamaguchi, Y. Hirose, T. Tani, K. Takatori, K. Kajiwara, and T. Kimoto, J. Appl. Phys. 103, 013510 (2008).
7. V. G. Kohn, T. S. Argunova, and J. H. Je, Appl. Phys. Lett. 91, 171901 (2007).
8. M. Yu. Gutkin, A. G. Sheinerman, M. A. Smirnov, V. G. Kohn, T. S. Argunova, J. H. Je, and J. W. Jung, Appl. Phys. Lett. 93, 151905 (2008).
9. T. S. Argunova, V. G. Kohn, J. W. Jung, and J. H. Je, Phys. Stat. Solidi (a) 206, 1833 (2009).
10. V. G. Kohn, T. S. Argunova, and J. H. Je, J. Phys. D: Appl. Phys. 43, 442002 (2010).
11. A. M. Afanasev and V. G. Kohn, Sov. Phys. Crystallogr. 22, 355 (1977).
12. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, Rev. Sci. Instrum. 66, 5486 (1995).
13. T. S. Argunova, V. G. Kohn, and J. H. Je, J. Surface Investig. X-ray, Synchr., Neutron Techn. 2, 861 (2008).
14. V. G. Kohn, T. S. Argunova, and J. H. Je, J. Surface Investig. X-ray, Synchr., Neutron Techn. 6, 840 (2012).

Data & Media loading...


Article metrics loading...



Peculiarities of quantitative hard x-ray phase contrast imaging of micropipes in SiC are discussed. The micropipe is assumed as a hollow cylinder with an elliptical cross section. The major and minor diameters can be restored using the least square fitting procedure by comparing the experimental data, i.e. the profile across the micropipe axis, with those calculated based on phase contrast theory. It is shown that one projection image gives an information which does not allow a complete determination of the elliptical cross section, if an orientation of micropipe is not known. Another problem is a weak accuracy in estimating the diameters, partly because of using pink synchrotron radiation, which is necessary because a monochromatic beam intensity is not sufficient to reveal the weak contrast from a very small object. The general problems of accuracy in estimating the two diameters using the least square procedure are discussed. Two experimental examples are considered to demonstrate small as well as modest accuracies in estimating the diameters.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd