1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Mechanism of vacancy formation induced by hydrogen in tungsten
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/12/10.1063/1.4849775
1.
1. C. P. Flynn, Point defects and diffusion (Clarendon Press, Oxford, 1972)
2.
2. C. Flynn, Physical Review 125, 881 (1962).
http://dx.doi.org/10.1103/PhysRev.125.881
3.
3. D. Weber, M. Meurtin, D. Paris, A. Fourdeux, and P. Lesbats, Le Journal de Physique Colloques 38, C7 (1977).
http://dx.doi.org/10.1051/jphyscol:1977764
4.
4. W. D. Callister, Materials Science And Engineering: An Introduction (John Wiley & Sons, New York, 2007), p. 82.
5.
5. P. Ehrhart, Properties and interactions of atomic defects in metals and alloys (Springer, Berlin, 1991), p. 88.
6.
6. J. Hirth, MTA 11, 861 (1980).
http://dx.doi.org/10.1007/BF02654700
7.
7. A. R. Troiano, trans. ASM 52, 54 (1960).
8.
8. A. C. Rion and J. V. Thomas, Physica Scripta T94, 9 (2001).
http://dx.doi.org/10.1238/Physica.Topical.094a00009
9.
9. V. K. Alimov and J. Roth, Physica Scripta T128, 6 (2007).
http://dx.doi.org/10.1088/0031-8949/2007/T128/002
10.
10. W. M. Shu, K. Isobe, and T. Yamanishi, Fusion Engineering and Design 83, 1044 (2008).
http://dx.doi.org/10.1016/j.fusengdes.2008.05.006
11.
11. K. Tokunaga, M. J. Baldwin, R. P. Doerner, N. Noda, Y. Kubota, N. Yoshida, T. Sogabe, T. Kato, and B. Schedler, Journal of Nuclear Materials 337–339, 887 (2005).
http://dx.doi.org/10.1016/j.jnucmat.2004.10.137
12.
12. W. M. Shu, E. Wakai, and T. Yamanishi, Nuclear Fusion 47, 201 (2007).
http://dx.doi.org/10.1088/0029-5515/47/3/006
13.
13. W. M. Shu, A. Kawasuso, Y. Miwa, E. Wakai, G. N. Luo, and T. Yamanishi, Physica Scripta T128, 96 (2007).
http://dx.doi.org/10.1088/0031-8949/2007/T128/019
14.
14. V. K. Alimov, J. Roth, and M. Mayer, Journal of Nuclear Materials 337–339, 619 (2005).
http://dx.doi.org/10.1016/j.jnucmat.2004.10.082
15.
15. J. P. Roszell, J. W. Davis, and A. A. Haasz, Journal of Nuclear Materials 429, 48 (2012).
http://dx.doi.org/10.1016/j.jnucmat.2012.05.018
16.
16. J. B. Condon and T. Schober, Journal of Nuclear Materials 207, 1 (1993).
http://dx.doi.org/10.1016/0022-3115(93)90244-S
17.
17. Y.-L. Liu, Y. Zhang, H.-B. Zhou, G.-H. Lu, F. Liu, and G. N. Luo, Physical Review B 79, 172103 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.172103
18.
18. L. Sun, S. Jin, X.-C. Li, Y. Zhang, and G.-H. Lu, Journal of Nuclear Materials 434, 395 (2013).
http://dx.doi.org/10.1016/j.jnucmat.2012.12.008
19.
19. H.-B. Zhou, Y.-L. Liu, S. Jin, Y. Zhang, G. N. Luo, and G.-H. Lu, Nuclear Fusion 50, 025016 (2010).
http://dx.doi.org/10.1088/0029-5515/50/2/025016
20.
20. R. A. Causey, Journal of Nuclear Materials 300, 91 (2002).
http://dx.doi.org/10.1016/S0022-3115(01)00732-2
21.
21. K. Heinola, T. Ahlgren, K. Nordlund, and J. Keinonen, Physical Review B 82, 094102 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.094102
22.
22. H.-B. Zhou, S. Jin, Y. Zhang, G.-H. Lu, and F. Liu, Physical Review Letters 109, 135502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.135502
23.
23. R. W. Siegel, H. Schultz, and K.-D. Rasch, Philosophical Magazine 41, 91 (1980).
http://dx.doi.org/10.1080/01418618008241833
24.
24. H. Trinkaus, Journal of Nuclear Materials 78, 189 (1983).
25.
25. H. Trinkaus and W. G. Wolfer, Journal of Nuclear Materials 122 & 123, 552 (1984).
http://dx.doi.org/10.1016/0022-3115(84)90655-X
26.
26. K. Nordlund and R. S. Averback, Physical Review Letters 80, 4201 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4201
27.
27. K. Nordlund, M. Ghaly, R. S. Averback, M. Caturla, T. Diaz de la Rubia, and J. Tarus, Physical Review B 57, 7556 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.7556
28.
28. X.-C. Li, X. Shu, Y.-N. Liu, F. Gao, and G.-H. Lu, Journal of Nuclear Materials 408, 12 (2011).
http://dx.doi.org/10.1016/j.jnucmat.2010.10.020
29.
29. Y.-L. Liu, Y. Zhang, G. N. Luo, and G.-H. Lu, Journal of Nuclear Materials 390–391, 1032 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.01.277
30.
30. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, The Journal of Chemical Physics 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
31.
31. N. D. M. Neil and W. Ashcroft, Solid State Physics (Saunders College, Orlando, 1976), p. 73.
32.
32. N. Juslin, V. Jansson, and K. Nordlund, Philosophical Magazine 90, 3581 (2010).
http://dx.doi.org/10.1080/14786435.2010.492248
33.
33. G. M. Wright, D. G. Whyte, B. Lipschultz, R. P. Doerner, and J. G. Kulpin, Journal of Nuclear Materials 363–365, 977 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.01.135
34.
34. Y. Zhong, K. Nordlund, M. Ghaly, and R. S. Averback, Physical Review B 58, 2361 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.2361
35.
35. C. Björkas, K. Nordlund, and S. Dudarev, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 267, 3204 (2009).
http://dx.doi.org/10.1016/j.nimb.2009.06.123
36.
36. S. Q. Shi, W. J. Zhu, H. Huang, and C. H. Woo, Radiation Effects and Defects in Solids 157, 201 (2002).
http://dx.doi.org/10.1080/10420150211408
37.
37. K. O. E. Henriksson, K. Nordlund, and J. Keinonen, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 244, 377 (2006).
http://dx.doi.org/10.1016/j.nimb.2005.10.020
38.
38. D. Terentyev, T. Klaver, P. Olsson, M. C. Marinica, F. Willaime, C. Domain, and L. Malerba, Physical Review Letters 100, 145503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.145503
39.
39. M. C. Marinica, F. Willaime, and N. Mousseau, Physical Review B 83, 094119 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.094119
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/12/10.1063/1.4849775
Loading
/content/aip/journal/adva/3/12/10.1063/1.4849775
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/12/10.1063/1.4849775
2013-12-10
2014-08-28

Abstract

We report a hydrogen induced vacancy formation mechanism in tungsten based on classical molecular dynamics simulations. We demonstrate the vacancy formation in tungsten due to the presence of hydrogen associated directly with a stable hexagonal self-interstitial cluster as well as a linear crowdion. The stability of different self-interstitial structures has been further studied and it is particularly shown that hydrogen plays a crucial role in determining the configuration of SIAs, in which the hexagonal cluster structure is preferred. Energetic analysis has been carried out to prove that the formation of SIA clusters facilitates the formation of vacancies. Such a mechanism contributes to the understanding of the early stage of the hydrogen blistering in tungsten under a fusion reactor environment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/12/1.4849775.html;jsessionid=1hug5jjtbi217.x-aip-live-02?itemId=/content/aip/journal/adva/3/12/10.1063/1.4849775&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Mechanism of vacancy formation induced by hydrogen in tungsten
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/12/10.1063/1.4849775
10.1063/1.4849775
SEARCH_EXPAND_ITEM