1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/12/10.1063/1.4849795
1.
1. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1413
2.
2. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)00266-2
3.
3. T. Iwata, K. Kai, T. Nakamichi, and M. Yamamoto, J. Phys. Soc. Japan 28, 582 (1970).
http://dx.doi.org/10.1143/JPSJ.28.582
4.
4. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz, and M. D. Baro, Phys. Rep. 422, 65 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.08.004
5.
5. R. Jungblut, R. Coehoorn, M. T. Johnson, J. aan de Stegge, and A. Reinders, J. Appl. Phys. 75, 6659 (1994).
http://dx.doi.org/10.1063/1.356888
6.
6. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004).
http://dx.doi.org/10.1063/1.1808879
7.
7. K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, and V. V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996).
http://dx.doi.org/10.1063/1.117637
8.
8. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, and A. Planes, Nature Materials 4, 450454, (2005).
http://dx.doi.org/10.1038/nmat1395
9.
9. R. Niemann, O. Heczko, L. Schultz, and S. Fähler, Appl. Phys. Lett. 97, 222507 (2010).
http://dx.doi.org/10.1063/1.3517443
10.
10. T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, and A. Planes, Phys. Rev. B 72, 014412 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014412
11.
11. A. Auge, N. Teichert, M. Meinert, G. Reiss, A. Hütten, E. Yuzuak, I. Dincer, Y. Elerman, I. Ennen, and P. Schattschneider, Phys. Rev. B 85, 21 (2012).
12.
12. Z. Li, C. Jing, J. Chen, S. Yuan, S. Cao, and J. Zhang, Appl. Phys. Lett. 91, 112505 (2007).
http://dx.doi.org/10.1063/1.2784958
13.
13. R. Vishnoi and D. Kaur, J. Alloys Compd. 509, 2833 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.11.133
14.
14. P. E. Bloechl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
15.
15. G. Kresse and J. Furthmueller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.1169
16.
16. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
17.
17. M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.3616
18.
18. A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, Phys. Rev. Lett. 65, 353 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.353
19.
19. A. van de Walle and G. Ceder, J. Phase Equilib. 23, 348 (2002).
http://dx.doi.org/10.1361/105497102770331596
20.
20. T. Kanomata, K. Fukushima, H. Nishihara, R. Kainuma, W. Itoh, K. Oikawa, K. Ishida, K. U. Neumann, and K. R. A. Ziebeck, Materials Science Forum 583, 119129 (2008).
http://dx.doi.org/10.4028/www.scientific.net/MSF.583.119
21.
21. M. Huang, J. Appl. Phys. 97, 064906 (2005).
http://dx.doi.org/10.1063/1.1862760
22.
22. R. Vishnoi, R. Singhal, and D. Kaur, J. Nanopart. Res. 13, 3975 (2011).
http://dx.doi.org/10.1007/s11051-011-0321-3
23.
23. C. V. Stager and C. C. M. Campbell, Can. J. Phys. 56, 674 (1978).
http://dx.doi.org/10.1139/p78-085
24.
24. S. Brück, J. Sort, V. Baltz, S. Surinach, J. S. Munoz, B. Dieny, and M. D. Baro, J. Nogués, Adv. Mater. 17, 2978 (2005).
http://dx.doi.org/10.1002/adma.200500544
25.
25. J. Hu, G. Jin, A. Hu, and Y. Ma, Eur. Phys. J. B 40, 265271 (2004).
http://dx.doi.org/10.1140/epjb/e2004-00272-0
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/12/10.1063/1.4849795
Loading
/content/aip/journal/adva/3/12/10.1063/1.4849795
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/12/10.1063/1.4849795
2013-12-10
2014-12-26

Abstract

A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni MnSn thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/12/1.4849795.html;jsessionid=5ntf3bnssmtc9.x-aip-live-06?itemId=/content/aip/journal/adva/3/12/10.1063/1.4849795&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/12/10.1063/1.4849795
10.1063/1.4849795
SEARCH_EXPAND_ITEM