1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/12/10.1063/1.4849795
1.
1. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1413
2.
2. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)00266-2
3.
3. T. Iwata, K. Kai, T. Nakamichi, and M. Yamamoto, J. Phys. Soc. Japan 28, 582 (1970).
http://dx.doi.org/10.1143/JPSJ.28.582
4.
4. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz, and M. D. Baro, Phys. Rep. 422, 65 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.08.004
5.
5. R. Jungblut, R. Coehoorn, M. T. Johnson, J. aan de Stegge, and A. Reinders, J. Appl. Phys. 75, 6659 (1994).
http://dx.doi.org/10.1063/1.356888
6.
6. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004).
http://dx.doi.org/10.1063/1.1808879
7.
7. K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, and V. V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996).
http://dx.doi.org/10.1063/1.117637
8.
8. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, and A. Planes, Nature Materials 4, 450454, (2005).
http://dx.doi.org/10.1038/nmat1395
9.
9. R. Niemann, O. Heczko, L. Schultz, and S. Fähler, Appl. Phys. Lett. 97, 222507 (2010).
http://dx.doi.org/10.1063/1.3517443
10.
10. T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, and A. Planes, Phys. Rev. B 72, 014412 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014412
11.
11. A. Auge, N. Teichert, M. Meinert, G. Reiss, A. Hütten, E. Yuzuak, I. Dincer, Y. Elerman, I. Ennen, and P. Schattschneider, Phys. Rev. B 85, 21 (2012).
12.
12. Z. Li, C. Jing, J. Chen, S. Yuan, S. Cao, and J. Zhang, Appl. Phys. Lett. 91, 112505 (2007).
http://dx.doi.org/10.1063/1.2784958
13.
13. R. Vishnoi and D. Kaur, J. Alloys Compd. 509, 2833 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.11.133
14.
14. P. E. Bloechl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
15.
15. G. Kresse and J. Furthmueller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.1169
16.
16. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
17.
17. M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.3616
18.
18. A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, Phys. Rev. Lett. 65, 353 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.353
19.
19. A. van de Walle and G. Ceder, J. Phase Equilib. 23, 348 (2002).
http://dx.doi.org/10.1361/105497102770331596
20.
20. T. Kanomata, K. Fukushima, H. Nishihara, R. Kainuma, W. Itoh, K. Oikawa, K. Ishida, K. U. Neumann, and K. R. A. Ziebeck, Materials Science Forum 583, 119129 (2008).
http://dx.doi.org/10.4028/www.scientific.net/MSF.583.119
21.
21. M. Huang, J. Appl. Phys. 97, 064906 (2005).
http://dx.doi.org/10.1063/1.1862760
22.
22. R. Vishnoi, R. Singhal, and D. Kaur, J. Nanopart. Res. 13, 3975 (2011).
http://dx.doi.org/10.1007/s11051-011-0321-3
23.
23. C. V. Stager and C. C. M. Campbell, Can. J. Phys. 56, 674 (1978).
http://dx.doi.org/10.1139/p78-085
24.
24. S. Brück, J. Sort, V. Baltz, S. Surinach, J. S. Munoz, B. Dieny, and M. D. Baro, J. Nogués, Adv. Mater. 17, 2978 (2005).
http://dx.doi.org/10.1002/adma.200500544
25.
25. J. Hu, G. Jin, A. Hu, and Y. Ma, Eur. Phys. J. B 40, 265271 (2004).
http://dx.doi.org/10.1140/epjb/e2004-00272-0
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/12/10.1063/1.4849795
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

XRD pattern of a = 30 nm (sample A) thick NiMnSn film, NiMnSn films with thicknesses = 50 nm (sample B), = 100 nm (sample C), = 200 nm (sample D) and a = 100 nm thick NiMnSn film (sample E).

Image of FIG. 2.

Click to view

FIG. 2.

Temperature dependence (cooling and heating) of the magnetization of a (a) = 30 nm (sample A), (b) = 50 nm (sample B), (c) = 100 nm (sample C) and (d) = 200 nm thick (sample D) NiMnSn film under a magnetic field of μ = 10 mT. The inset of (c) shows the temperature dependent magnetization of sample E ( = 100 nm).

Image of FIG. 3.

Click to view

FIG. 3.

Temperature dependent magnetization after ZFC and FC of NiMnSn and NiMnSn films with (a) = 30 nm (sample A), (b) = 50 nm (sample B), (c) = 100 nm (sample C) and (d) = 200 nm (sample D) under a magnetic field of μ = 10 mT. The magnetization (measured under the same conditions) of the NiMnSn ( = 100 nm) film (sample E) is shown as inset in (c).

Image of FIG. 4.

Click to view

FIG. 4.

Energy required to flip the spin of one extra Mn atom sitting on the Sn sub-lattice for the austenite and martensite state in a NiMnSn alloy.

Image of FIG. 5.

Click to view

FIG. 5.

Magnetization hysteresis loops of (a) a NiMnSn thin films ( = 30 nm), (b–d) NiMnSn films ( = 50 nm, = 100 nm and = 200 nm) and (e) a NiMnSn ( = 100 nm) film measured at 10 K after ZFC (VSM measurements). The insets show an enlarged view of the central region of the loops.

Image of FIG. 6.

Click to view

FIG. 6.

Thickness dependence of the exchange bias field after ZFC.

Image of FIG. 7.

Click to view

FIG. 7.

Temperature dependence after FC in μ = 1 T of the exchange bias field and coercivity for NiMnSn alloys with different thicknesses.

Tables

Generic image for table

Click to view

Table I.

Lattice parameters of five different Ni-Mn-Sn samples.

Generic image for table

Click to view

Table II.

Comparison of composition, thickness, EB field and coercivity of different Ni-Mn-Sn thin film samples.

Loading

Article metrics loading...

/content/aip/journal/adva/3/12/10.1063/1.4849795
2013-12-10
2014-04-20

Abstract

A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni MnSn thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/12/1.4849795.html;jsessionid=4q3pfa7semisc.x-aip-live-03?itemId=/content/aip/journal/adva/3/12/10.1063/1.4849795&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/12/10.1063/1.4849795
10.1063/1.4849795
SEARCH_EXPAND_ITEM