Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/12/10.1063/1.4856335
1.
1. A. A. Voevodin and J. S. Zabinski, Compos. Sci. Technol. 65(5), 741748 (2005).
2.
2. H. Yu, P. Li, and J. Robertson, Diamond Relat. Mater. 20(7), 10201025 (2011).
http://dx.doi.org/10.1016/j.diamond.2011.06.005
3.
3. S. D. A. Lawes, M. E. Fitzpatrick, and S. V. Hainsworth, J. Phys. D: Appl. Phys. 40(18), 5427 (2007).
http://dx.doi.org/10.1088/0022-3727/40/18/S03
4.
4. A. S. Loir, F. Garrelie, C. Donnet, M. Belin, B. Forest, F. Rogemond, and P. Laporte, Thin Solid Films 453–454(0), 531536 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.135
5.
5. W. Yongjun, L. Hongxuan, J. Li, L. Xiaohong, W. Yanxia, L. Yanhong, F. Yingying, Z. Huidi, and C. Jianmin, J. Phys. D: Appl. Phys. 45(29), 295301 (2012).
http://dx.doi.org/10.1088/0022-3727/45/29/295301
6.
6. M. Fyta, C. Mathioudakis, I. N. Remediakis, and P. C. Kelires, Surf. Coat. Technol. 206(4), 696702 (2011).
http://dx.doi.org/10.1016/j.surfcoat.2011.02.026
7.
7. C. Mathioudakis, G. Kopidakis, P. Patsalas, and P. C. Kelires, Diamond Relat. Mater. 16(10), 17881792 (2007).
http://dx.doi.org/10.1016/j.diamond.2007.08.009
8.
8. Š. Meškinis, A. Vasiliauskas, K. Šlapikas, R. Gudaitis, S. Tamulevičius, and G. Niaura, Surf. Coat. Technol. 211(0), 172175 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2011.10.004
9.
9. D. S. Grierson and R. W. Carpick, Nano Today 2(5), 1221 (2007).
http://dx.doi.org/10.1016/S1748-0132(07)70139-1
10.
10. R. Krishnan, N. Kumar, T. R. Ravindran, S. Dash, A. K. Tyagi, B. Raj, S. Gayathri, and M. Sridharan, Proc. Int. Conf. on Nanoscience, Engineering and Technology 524527 (2011).
http://dx.doi.org/10.1109/ICONSET.2011.6168022
11.
11. R. A. Singh, K. Na, J. W. Yi, K.-R. Lee, and E.-S. Yoon, Appl. Surf. Sci. 257(8), 31533157 (2011).
http://dx.doi.org/10.1016/j.apsusc.2010.10.131
12.
12. C. Donnet, M. Belin, J. C. Augé, J. M. Martin, A. Grill, and V. Patel, Surf. Coat. Technol. 68–69(0), 626631 (1994).
http://dx.doi.org/10.1016/0257-8972(94)90228-3
13.
13. B. Bhushan, Diamond Relat. Mater. 8(11), 19852015 (1999).
http://dx.doi.org/10.1016/S0925-9635(99)00158-2
14.
14. A. Erdemir, Tribology International 37(11–12), 10051012 (2004).
http://dx.doi.org/10.1016/j.triboint.2004.07.018
15.
15. Ali Erdemir and C. Donnet, J. Phys. D: Appl. Phys. 39(18), R311 (2006).
http://dx.doi.org/10.1088/0022-3727/39/18/R01
16.
16. A. R. Konicek, D. S. Grierson, A. V. Sumant, T. A. Friedmann, J. P. Sullivan, P. U. P. A. Gilbert, W. G. Sawyer, and R. W. Carpick, Phys. Rev. B 85 (2012).
17.
17. A. Erdemir, Surf. Coat. Technol. 146–147(0), 292297 (2001).
http://dx.doi.org/10.1016/S0257-8972(01)01417-7
18.
18. C. Mathioudakis and M. Fyta, Diamond Relat. Mater. 23(0), 5053 (2012).
http://dx.doi.org/10.1016/j.diamond.2011.12.044
19.
19. P. Bruno, F. Bénédic, F. Mohasseb, G. Lombardi, F. Silva, and K. Hassouni, J. Phys. D: Appl. Phys. 37(22), L35 (2004).
http://dx.doi.org/10.1088/0022-3727/37/22/L01
20.
20. W. Xua, L. J. Huanga, Y. Z. Shiha, T. Kima, Y. Hunga, and G. Lib, Thin Solid Films 355–356, 353356 (1999).
http://dx.doi.org/10.1016/S0040-6090(99)00455-1
21.
21. X. L. Peng and T. W. Clyne, Thin Solid Films 312(1–2), 219227 (1998).
http://dx.doi.org/10.1016/S0040-6090(97)00703-7
22.
22. X. L. Peng and T. W. Clyne, Thin Solid Films 312(1–2), 207218 (1998).
http://dx.doi.org/10.1016/S0040-6090(97)00588-9
23.
23. A. Sikora, F. Garrelie, C. Donnet, A. S. Loir, J. Fontaine, J. C. Sanchez-Lopez, and T. C. Rojas, J. Appl. Phys 108(11), 113516113519 (2010).
http://dx.doi.org/10.1063/1.3510483
24.
24. S. Chowdhury, M. T. Laugier, and I. Z. Rahman, J. Mater. Process. Technol. 153–154(0), 804810 (2004).
http://dx.doi.org/10.1016/j.jmatprotec.2004.04.265
25.
25. C. Corbella, S. Portal-Marco, M. Rubio-Roy, E. Bertran, G. Oncins, M. A. Vallvé, J. Ignés-Mullol, and J. L. Andújar, J. Phys. D: Appl. Phys. 44(39), 395301 (2011).
http://dx.doi.org/10.1088/0022-3727/44/39/395301
26.
26. A. A. Ogwu, T. I. T. Okpalugo, and J. A. D. McLaughlin, AIP Advances 2(3), 032128032128 (2012).
http://dx.doi.org/10.1063/1.4742852
27.
27. F. Qian, V. Craciun, R. K. Singh, S. D. Dutta, and P. P. Pronko, J. Appl. Phys 86(4), 22812290 (1999).
http://dx.doi.org/10.1063/1.371043
28.
28. M. Tabbal, P. Merel, M. Chaker, M. A. El Khakani, E. G. Herbert, B. N. Lucas, and M. E. O’Hern, J. Appl. Phys 85(7), 38603865 (1999).
http://dx.doi.org/10.1063/1.369757
29.
29. P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, J. Appl. Phys 78(10), 62336240 (1995).
http://dx.doi.org/10.1063/1.360570
30.
30. X. Liu, T. H. Metcalf, P. Mosaner, and A. Miotello, Appl. Surf. Sci. 253(15), 64806486 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.01.021
31.
31. S. S. Yap, W. O. Siew, C. H. Nee, and T. Y. Tou, Diamond Relat. Mater. 20(3), 294298 (2011).
http://dx.doi.org/10.1016/j.diamond.2011.01.013
32.
32. T. V. Kononenko, V. V. Kononenko, S. M. Pimenov, E. V. Zavedeev, V. I. Konov, V. Romano, and G. Dumitru, Diamond Relat. Mater. 14(8), 13681376 (2005).
http://dx.doi.org/10.1016/j.diamond.2005.02.009
33.
33. S. D. Berger, D. R. McKenzie, and P. J. Martin, Philos. Mag. Lett. 57(6), 285290 (1988).
http://dx.doi.org/10.1080/09500838808214715
34.
34. A.-L. Hamon, J. Verbeeck, D. Schryvers, J. Benedikt, and R. M. C. M. v. d. Sanden, J. Mater. Chem. 14(13), 20302035 (2004).
http://dx.doi.org/10.1039/b406468m
35.
35. Z. Tang, Z. J. Zhang, K. Narumi, Y. Xu, H. Naramoto, S. N. and, and K. Miyashita, J. Appl. Phys 89(3), 19591964 (2001).
http://dx.doi.org/10.1063/1.1333739
36.
36. E. Gyorgy, I. N. Mihailescu, M. Kompitsas, and G. A., J. Optoelect. Adv. Mater. 6(1), 3946 (2004).
37.
37. S. Pisana, C. Casiraghi, A. C. Ferrari, and J. Robertson, Diamond Relat. Mater. 15(4–8), 898903 (2006).
http://dx.doi.org/10.1016/j.diamond.2005.10.052
38.
38. S. Prawer, K. W. Nugent, Y. Lifshitz, G. D. Lempert, E. Grossman, J. Kulik, I. Avigal, and R. Kalish, Diamond Relat. Mater. 5(3–5), 433438 (1996).
http://dx.doi.org/10.1016/0925-9635(95)00363-0
39.
39. S. Gayathri, R. Krishnan, T. R. Ravindran, S. Tripura Sundari, S. Dash, A. K. Tyagi, B. Raj, and M. Sridharan, Mater. Res. Bull 47(3), 843849 (2012).
http://dx.doi.org/10.1016/j.materresbull.2011.11.042
40.
40. K. W. R. Gilkes, S. Prawer, K. W. Nugent, J. Robertson, H. S. Sands, Y. Lifshitz, and X. Shi, J. Appl. Phys 87(10), 72837289 (2000).
http://dx.doi.org/10.1063/1.372981
41.
41. A. C. Ferrari and J. Robertson, Philos. Trans. R. Soc. London, Ser. A 362, 24772512 (2004).
http://dx.doi.org/10.1098/rsta.2004.1452
42.
42. J. Robertson, Mater. Sci. Eng., R 37(4–6), 129281 (2002).
http://dx.doi.org/10.1016/S0927-796X(02)00005-0
43.
43. J. Robertson, Diamond Relat. Mater. 14(3–7), 942948 (2005).
http://dx.doi.org/10.1016/j.diamond.2004.11.028
44.
44. A. C. Ferrari, in Tribology of Diamond-Like Carbon Films:Fundamentals and Applications, edited by A. C. Ferrari and C. Donnet (Springer, Cambridge, 2008), Vol. xvi, pp. 664.
45.
45. E. Camps, L. Escobar-Alarcon, and M. E. Espinoza, Superficies y Vacio 16(4), 3741 (2003).
46.
46. F. Qian, R. K. Singh, S. K. Dutta, and P. P. Pronko, Appl. Phys. Lett. 67(21), 31203122 (1995).
http://dx.doi.org/10.1063/1.114853
47.
47. A. A. Voevodin and M. S. Donley, Surf. Coat. Technol. 82(3), 199213 (1996).
http://dx.doi.org/10.1016/0257-8972(95)02734-3
48.
48. J. Fink, T. Müller-Heinzerling, J. Pflüger, B. Scheerer, B. Dischler, P. Koidl, A. Bubenzer, and R. E. Sah, Phys. Rev. B 30(8), 47134718 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.4713
49.
49. P. E. Batson, Nature 366(6457), 727728 (1993).
http://dx.doi.org/10.1038/366727a0
50.
50. R. F. Egerton, Electron Energy-loss spectroscopy in the electron microscope, third ed. (Springer, Canada, 2011).
51.
51. Yoshie Murooka, Nobuo Tanaka, Shigeru Hirono, and M. Hibino, Mater. Trans. 43(8), 20922096 (2002).
http://dx.doi.org/10.2320/matertrans.43.2092
52.
52. U. Diebold, A. Preisinger, P. Schattschneider, and P. Varga, Surf. Sci 197(3), 430443 (1988).
http://dx.doi.org/10.1016/0039-6028(88)90638-3
53.
53. J. Kulik, Y. Lifshitz, G. D. Lempert, J. W. Rabalais, and D. Marton, J. Appl. Phys 76(9), 50635069 (1994).
http://dx.doi.org/10.1063/1.357218
54.
54. L. Joly-Pottuz, C. Matta, M. I. d. B. Bouchet, B. Vacher, J. M. Martin, and T. Sagawa, J. Appl. Phys 102(6), 064912064919 (2007).
http://dx.doi.org/10.1063/1.2779256
55.
55. L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Saveliev, and V. Zhuravlev, Diamond Relat. Mater. 16(12), 21092113 (2007).
http://dx.doi.org/10.1016/j.diamond.2007.07.026
56.
56. R. Paul, S. Dalui, S. N. Das, R. Bhar, and A. K. Pal, Appl. Surf. Sci. 255(5, Part 1), 17051711 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.06.015
57.
57. N. Moolsradoo and S. Watanabe, Diamond Relat. Mater. 19(5–6), 525529 (2010).
http://dx.doi.org/10.1016/j.diamond.2010.01.010
58.
58. H. Tavana and A. W. Neumann, Adv. Colloid Interface Sci. 132(1), 132 (2007).
http://dx.doi.org/10.1016/j.cis.2006.11.024
59.
59. L. Y. Ostrovskaya, A. P. Dementiev, I. I. Kulakova, and V. G. Ralchenko, Diamond Relat. Mater. 14(3–7), 486490 (2005).
http://dx.doi.org/10.1016/j.diamond.2004.09.010
60.
60. S. Gayathri, N. Kumar, R. Krishnan, T. R. Ravindran, S. Dash, A. K. Tyagi, B. Raj, and M. Sridharan, Tribology International 53(0), 8797 (2012).
http://dx.doi.org/10.1016/j.triboint.2012.04.015
61.
61. M. Lubwama, K. A. McDonnell, J. B. Kirabira, A. Sebbit, K. Sayers, D. Dowling, and B. Corcoran, Surf. Coat. Technol. 206(22), 45854593 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2012.05.015
62.
62. F. Zhao, H. X. Li, L. Ji, Y. F. Mo, W. L. Quan, H. D. Zhou, and J. M. Chen, J. Phys. D: Appl. Phys. 42(16), 165407 (2009).
http://dx.doi.org/10.1088/0022-3727/42/16/165407
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/12/10.1063/1.4856335
Loading
/content/aip/journal/adva/3/12/10.1063/1.4856335
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/12/10.1063/1.4856335
2013-12-17
2016-12-11

Abstract

Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of bonded amorphous carbon (C) and tetrahedral amorphous carbon (C) made by domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of CC ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by C and sp2 fraction which is embedded within the clusters of C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of C/ and C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from to hybridized structure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/12/1.4856335.html;jsessionid=uRlw3RDLwq3ZnBCe1asd0sut.x-aip-live-06?itemId=/content/aip/journal/adva/3/12/10.1063/1.4856335&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/12/10.1063/1.4856335&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/12/10.1063/1.4856335'
Right1,Right2,Right3,