Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/12/10.1063/1.4858416
1.
1. H. T. Diep (ed.), Frustrated Spin Systems, 2nd ed. (World Scientific, Singapore, 2013).
2.
2. H. T. Diep, V. Bocchetti, Danh-Tai Hoang, and V. T. Ngo, “Theory and Simulation of Magnetic Materials: Physics at Phase Frontiers,” arXiv:1309.4754 [cond-mat.stat-mech] (2013).
3.
3. A. Zangwill, Physics at Surfaces (Cambridge University Press, London, 1988).
4.
4. J. A. C. Bland and B. Heinrich (eds.), Ultrathin Magnetic Structures (Springer-Verlag, Berlin, 1994), Vol. I and II.
5.
5. C. Santamaria and H. T. Diep, J. Mag. Mag. Mater. 212, 23 (2000).
http://dx.doi.org/10.1016/S0304-8853(99)00795-7
6.
6. D.-T. Hoang, M. Kasperski, H. Puszkarski, and H. T. Diep, J. Phys.: Cond. Matter 25, 056006 (2013).
http://dx.doi.org/10.1088/0953-8984/25/5/056006
7.
7. Y. Yafet and E. M. Gyorgy, Phys. Rev. B 38, 9145 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.9145
8.
8. A. Moschel and K. D. Usadel, Phys. Rev. B 51, 16111 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.16111
9.
9. A. B. MacIsaac, K. De’Bell, and J. P. Whitehead, Phys. Rev. Lett. 80, 616 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.616
10.
10. E. Y. VEdmedenko, H. P. Oepen, A. Ghazali, J.-C. S. Lévy, and J. Kirschner, Phys. Rev. Lett. 84, 5884 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5884
11.
11. A. Maziewski, V. Zablotskii, and M. Kisielewski, Phys. Rev. B 73, 134415 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.134415
12.
12. C. S. Rocha, P. Z. Coura, S. A. Leonel, R. A. Dias, and B. V. Costa, J. Appl. Phys. 107, 053903 (2010).
http://dx.doi.org/10.1063/1.3318605
13.
13. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto and T. Ono, Science 289(5481), 930932 (2000).
http://dx.doi.org/10.1126/science.289.5481.930
14.
14. J. Raabe, R. Pulwey, R. Sattler, T. Schweinbck, J. Zweck, and D. Weiss, J. Appl. Phys. 88, 4437 (2000).
http://dx.doi.org/10.1063/1.1289216
15.
15. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern and R. Wiesendanger, Science 298, 577580 (2002).
http://dx.doi.org/10.1126/science.1075302
16.
16. Q. F. Xiao, J. Rudge, E. Girgis, J. Kolthammer, B. C. Choi, Y. K. Hong, and G. W. Donohoe, J. Appl. Phys. 102, 103904 (2007).
http://dx.doi.org/10.1063/1.2811885
17.
17. N. Kikuchu, S. Okamoto, O. Kitakami, Y. Shimada, S. G. Kim, Y. Otani, and F. Fukamichi, J. Appl. Phys. 90, 6548 (2001).
http://dx.doi.org/10.1063/1.1416132
18.
18. F. J. A. den Broeder, D. Kuiper, A. P. van de Mosselaer, and W. Hoving, Phys. Rev. Lett. 60, 2769 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.2769
19.
19. H. Kurt, M. Venkatesan, and J. M. D. Coey, J. Appl. Phys. 108, 073916 (2010).
http://dx.doi.org/10.1063/1.3481452
20.
20. Y. Hodumi, J. Shi, and Y. Nakamura, Appl. Phys. Lett. 90, 212506 (2007).
http://dx.doi.org/10.1063/1.2742793
21.
21. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, London, 2009).
22.
22. S. Brooks, A. Gelman, G. L. Jones, and Xiao-Li Meng, Handbook of Markov Chain Monte Carlo (CRC Press, 2011).
23.
23. E. Yu. Vedmedenko, A. Ghazali, and J.-C. S. Lévy, Phys. Rev. B 59, 3329 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.3329
24.
24. U. Nowak, R. W. Chantrell, and E. C. Kennedy, Phys. Rev. Lett. 84, 163 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.163
25.
25. V. T. Ngo and H. T. Diep, Phys. Rev. B 75, 035412 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035412
26.
26. G. M. Wysin, Phys. Rev. B 49, 1515615162 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.15156
27.
27. M. E. Gouvêa, G. M. Wysin, A. R. Bishop, and F. G. Martens, Phys. Rev. B 39, 11840 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.11840
28.
28. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th ed. (Oxford Univ. Press, 2002).
29.
29. D. J. Amit, Field Theory, the Renormalization Group and Critical Phenomena (World Scientific, Singapore, 1984).
30.
30. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
http://dx.doi.org/10.1103/PhysRevLett.17.1133
31.
31. V. Privman (ed.), Finite-Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1998).
32.
32. H. T. Diep, Theory of Magnetism - Application to Surface Physics (World Scientific, Singapore, 2013) in press.
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/12/10.1063/1.4858416
Loading
/content/aip/journal/adva/3/12/10.1063/1.4858416
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/12/10.1063/1.4858416
2013-12-31
2016-12-08

Abstract

We study the effect of perpendicular single-ion anisotropy, , on the ground-state structure and finite-temperature properties of a two-dimensional magnetic nanodot in presence of a dipolar interaction of strength . By a simulated annealing Monte Carlo method, we show that in the ground state a vortex core perpendicular to the nanodot plane emerges already in the range of moderate anisotropy values above a certain threshold level. In the giant-anisotropy regime the vortex structure is superseded by a stripe domain structure with stripes of alternate domains perpendicular to the surface of the sample. We have also observed an intermediate stage between the vortex and stripe structures, with satellite regions of tilted nonzero perpendicular magnetization around the core. At finite temperatures, at small , we show by Monte Carlo simulations that there is a transition from the the in-plane vortex phase to the disordered phase characterized by a peak in the specific heat and the vanishing vortex order parameter. At stronger , we observe a discontinuous transition with a large latent heat from the in-plane vortex phase to perpendicular stripe ordering phase before a total disordering at higher temperatures. In the regime of perpendicular stripe domains, namely with giant , there is no phase transition at finite : the stripe domains are progressively disordered with increasing . Finite-size effects are shown and discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/12/1.4858416.html;jsessionid=5WLw2f8KFEqN9yrKQZLlO5vw.x-aip-live-06?itemId=/content/aip/journal/adva/3/12/10.1063/1.4858416&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/12/10.1063/1.4858416&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/12/10.1063/1.4858416'
Right1,Right2,Right3,