Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Mikami and S. Nakamura, J. Alloys Compd. 208, 687 (2006).
2. A. Ubaldini and M. M. Carnasciali, J. Alloys Compd. 454, 374 (2008).
3. E. Antic-Fidancev, J. Hölsa, and M. Lastusaari, J. Alloys Compd. 341, 82 (2002).
4. T. Jüstel, J. C. Krupa, and D. U. Wiechert, J. Lumin. 93, 179 (2001).
5. F. Uchinakawa and J. D. Mackenzi, J. Mater. Res. 4, 787 (1989).
6. G. Schaack and J. A. Koningstein, J. Opt. Soc. Am. 60, 1110 (1970).
7. C. Meyer, J. P. Sanchez, J. Thomasson, and J. P. Itié, Phys. Rev. B 51, 12187 (1995).
8. Q. X. Guo, Y. S. Zhao, C. Jiang, W. L. Mao, Z. W. Wang, J. Z. Zhang, and Y. J. Wang, Inorg. Chem. 46, 6164 (2007).
9. D. Liu, W. Lei, Y. Li, Y. Ma, J. Hao, X. Chen, Y. Jin, D. D. Liu, S. Yu, Q. L. Cui, and G. T. Zou, Inorg. Chem. 48, 8251 (2009).
10. D. Lonappan, N. V. Chandra Shekar, T. R. Ravindran, and P. C. Sahu, Mater. Chem. Phys. 120, 65 (2010).
11. E. Husson, C. Proust, P. Gillet, and J. P. Itié, Mater. Res. Bull. 34, 2085 (1999).
12. H. R. Hoekstra and K. Gingerich, Science 146, 1163 (1964).
13. H. R. Hoekstra, Inorg. Chem. 5, 754 (1966).
14. T. Atou, K. Kusaba, K. Fukuoka, M. Kikuchi, and Y. Syono, J Solid State Chem. 89, 378 (1990).
15. Q. Guo, Y. Zhao, C. Jiang, W. L. Mao, Z. Wang, J. Zhang, and Y. Wang, Inorg. Chem. 46, 6164 (2007).
16. T. Hongo, K. Kondo, K. G. Nakamura, T. Atou, J Mat. Sci. 42, 2582 (2007).
17. H. Chen, C. He, C. Gao, Y. Ma, J. Zhang, X. Wang, S. Gao, D. Li, S. Kan, and G. Zau, J Phys.:Condens. Matter 19, 425229 (2007).
18. M. W. Urban and B. C. Cornilsen, J. Phys. Chem. Solids 48, 475 (1987).
19. N. Dilawar, D. Varandani, V. P. Pandey, M. Kumar, S. M. Shivaprasad, P. K. Sharma, and A. K. Bandyopadhyay, J. Nanosci. Nanotechnol. 6, 105 (2006).
20. N. Dilawar, D. Varandani, S. Mehrotra, H. Poswal, S. M. Sharma, and A. K. Bandyopadhyay, Nanotechnology, 19, 115703 (2008).
21. N. D. Sharma, J. Singh, S. Dogra, D. Varandani, H. K. Poswal, S. M. Sharma, and A. K. Bandyopadhyay, J. Raman Spectrosc. 42, 438 (2011).
22. H. Yusa, T. Kikegawa, and T. Tsuchiya, Photon Factory Report, 27 PartB 195 (2010).
23. D. Lonappan, 5.pdf, Ph.D Thesis, IGCAR, India (2012).
24. W. B. White and V. G. Keramidas, Spectrochimica Acta 28A, 501 (1972).
25. J. B. Gruber, R. D. Chirico, and E. F. Westrum, Jr., J. Chem. Phys. 76, 4600 (1982).
26. H. J. Schugar, E. I. Solomon, W. L. Cleveland, and L. Goodman, J. Am. Chem. Soc. 79, 6442 (1975).
27. J. Gouteron, D. Michel, A. M. Lejus, and J. Zarembowitch, J. Sol. Stat Chem. 38, 288 (1981).
28. S. Jiang, J. Liu, C. Lin, L. Bai, W. Xiao, Y. Zhang, D. Zhang, X. Li, Y. Li, and L. Tang, J. Appl. Phys. 108, 083541 (2010).
29. F. X. Zhang, M. Lang, J. W. Wang, U. Becker, and R. C. Ewing, Phys. Rev. B. 78, 064114 (2008).
30. S. M. Sharma and S. K. Sikka, Prog. Mater. Sci. 40, 1 (1996)
31. H. Tang and I. P. Herman, Phys. Rev. B 43, 2299 (1991).
32. M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).
33. K. Samanta, P. Bhattacharya, and R. S. Katiyar, Phys. Rev. B 75, 035208 (2007).
34. K. Kamali, T. R. Ravindran, C. Ravi, Y. Sorb, N. Subramanian, and A. K. Arora, Phys. Rev. B 86, 144301 (2012).

Data & Media loading...


Article metrics loading...



The investigation of structural phase transition and anharmonic behavior of YbO has been carried out by high-pressure and temperature dependent Raman scattering studies respectively. Raman studies under high pressure were carried out in a diamond anvil cell at room temperature which indicate a structural transition from cubic to hexagonal phase at and above 20.6 GPa. In the decompression cycle, YbO retained its high pressure phase. We have observed a Stark line in the Raman spectra at 337.5 cm−1 which arises from the electronic transition between 2 and 2 multiplates of Yb3+ (4 13) levels. These were followed by temperature dependent Raman studies in the range of 80–440 K, which show an unusual mode hardening with increasing temperature. The hardening of the most dominant mode ( + ) was analyzed in light of the theory of anharmonic phonon-phonon interaction and thermal expansion of the lattice. Using the mode Grüneisen parameter obtained from high pressure Raman measurements; we have calculated total anharmonicity of the + mode from the temperature dependent Raman data.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd