Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/12/10.1063/1.4858421
1.
1. M. Mikami and S. Nakamura, J. Alloys Compd. 208, 687 (2006).
http://dx.doi.org/10.1016/j.jallcom.2005.01.068
2.
2. A. Ubaldini and M. M. Carnasciali, J. Alloys Compd. 454, 374 (2008).
http://dx.doi.org/10.1016/j.jallcom.2006.12.067
3.
3. E. Antic-Fidancev, J. Hölsa, and M. Lastusaari, J. Alloys Compd. 341, 82 (2002).
http://dx.doi.org/10.1016/S0925-8388(02)00073-7
4.
4. T. Jüstel, J. C. Krupa, and D. U. Wiechert, J. Lumin. 93, 179 (2001).
http://dx.doi.org/10.1016/S0022-2313(01)00199-5
5.
5. F. Uchinakawa and J. D. Mackenzi, J. Mater. Res. 4, 787 (1989).
http://dx.doi.org/10.1557/JMR.1989.0787
6.
6. G. Schaack and J. A. Koningstein, J. Opt. Soc. Am. 60, 1110 (1970).
http://dx.doi.org/10.1364/JOSA.60.001110
7.
7. C. Meyer, J. P. Sanchez, J. Thomasson, and J. P. Itié, Phys. Rev. B 51, 12187 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.12187
8.
8. Q. X. Guo, Y. S. Zhao, C. Jiang, W. L. Mao, Z. W. Wang, J. Z. Zhang, and Y. J. Wang, Inorg. Chem. 46, 6164 (2007).
http://dx.doi.org/10.1021/ic070154g
9.
9. D. Liu, W. Lei, Y. Li, Y. Ma, J. Hao, X. Chen, Y. Jin, D. D. Liu, S. Yu, Q. L. Cui, and G. T. Zou, Inorg. Chem. 48, 8251 (2009).
http://dx.doi.org/10.1021/ic900889v
10.
10. D. Lonappan, N. V. Chandra Shekar, T. R. Ravindran, and P. C. Sahu, Mater. Chem. Phys. 120, 65 (2010).
http://dx.doi.org/10.1016/j.matchemphys.2009.10.022
11.
11. E. Husson, C. Proust, P. Gillet, and J. P. Itié, Mater. Res. Bull. 34, 2085 (1999).
http://dx.doi.org/10.1016/S0025-5408(99)00205-6
12.
12. H. R. Hoekstra and K. Gingerich, Science 146, 1163 (1964).
http://dx.doi.org/10.1126/science.146.3648.1163
13.
13. H. R. Hoekstra, Inorg. Chem. 5, 754 (1966).
http://dx.doi.org/10.1021/ic50039a013
14.
14. T. Atou, K. Kusaba, K. Fukuoka, M. Kikuchi, and Y. Syono, J Solid State Chem. 89, 378 (1990).
http://dx.doi.org/10.1016/0022-4596(90)90280-B
15.
15. Q. Guo, Y. Zhao, C. Jiang, W. L. Mao, Z. Wang, J. Zhang, and Y. Wang, Inorg. Chem. 46, 6164 (2007).
http://dx.doi.org/10.1021/ic070154g
16.
16. T. Hongo, K. Kondo, K. G. Nakamura, T. Atou, J Mat. Sci. 42, 2582 (2007).
http://dx.doi.org/10.1007/s10853-006-1417-5
17.
17. H. Chen, C. He, C. Gao, Y. Ma, J. Zhang, X. Wang, S. Gao, D. Li, S. Kan, and G. Zau, J Phys.:Condens. Matter 19, 425229 (2007).
http://dx.doi.org/10.1088/0953-8984/19/42/425229
18.
18. M. W. Urban and B. C. Cornilsen, J. Phys. Chem. Solids 48, 475 (1987).
http://dx.doi.org/10.1016/0022-3697(87)90108-9
19.
19. N. Dilawar, D. Varandani, V. P. Pandey, M. Kumar, S. M. Shivaprasad, P. K. Sharma, and A. K. Bandyopadhyay, J. Nanosci. Nanotechnol. 6, 105 (2006).
20.
20. N. Dilawar, D. Varandani, S. Mehrotra, H. Poswal, S. M. Sharma, and A. K. Bandyopadhyay, Nanotechnology, 19, 115703 (2008).
http://dx.doi.org/10.1088/0957-4484/19/11/115703
21.
21. N. D. Sharma, J. Singh, S. Dogra, D. Varandani, H. K. Poswal, S. M. Sharma, and A. K. Bandyopadhyay, J. Raman Spectrosc. 42, 438 (2011).
http://dx.doi.org/10.1002/jrs.2720
22.
22. H. Yusa, T. Kikegawa, and T. Tsuchiya, Photon Factory Report, 27 PartB 195 (2010).
23.
23. D. Lonappan, http://ir.inflibnet.ac.in:8080/jspui/bitstream/10603/9923/10/10_chapter 5.pdf, Ph.D Thesis, IGCAR, India (2012).
24.
24. W. B. White and V. G. Keramidas, Spectrochimica Acta 28A, 501 (1972).
25.
25. J. B. Gruber, R. D. Chirico, and E. F. Westrum, Jr., J. Chem. Phys. 76, 4600 (1982).
http://dx.doi.org/10.1063/1.443538
26.
26. H. J. Schugar, E. I. Solomon, W. L. Cleveland, and L. Goodman, J. Am. Chem. Soc. 79, 6442 (1975).
http://dx.doi.org/10.1021/ja00855a024
27.
27. J. Gouteron, D. Michel, A. M. Lejus, and J. Zarembowitch, J. Sol. Stat Chem. 38, 288 (1981).
http://dx.doi.org/10.1016/0022-4596(81)90058-X
28.
28. S. Jiang, J. Liu, C. Lin, L. Bai, W. Xiao, Y. Zhang, D. Zhang, X. Li, Y. Li, and L. Tang, J. Appl. Phys. 108, 083541 (2010).
http://dx.doi.org/10.1063/1.3499301
29.
29. F. X. Zhang, M. Lang, J. W. Wang, U. Becker, and R. C. Ewing, Phys. Rev. B. 78, 064114 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.064114
30.
30. S. M. Sharma and S. K. Sikka, Prog. Mater. Sci. 40, 1 (1996)
http://dx.doi.org/10.1016/0079-6425(95)00006-2
31.
31. H. Tang and I. P. Herman, Phys. Rev. B 43, 2299 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.2299
32.
32. M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.1928
33.
33. K. Samanta, P. Bhattacharya, and R. S. Katiyar, Phys. Rev. B 75, 035208 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035208
34.
34. K. Kamali, T. R. Ravindran, C. Ravi, Y. Sorb, N. Subramanian, and A. K. Arora, Phys. Rev. B 86, 144301 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.144301
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/12/10.1063/1.4858421
Loading
/content/aip/journal/adva/3/12/10.1063/1.4858421
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/12/10.1063/1.4858421
2013-12-31
2016-12-07

Abstract

The investigation of structural phase transition and anharmonic behavior of YbO has been carried out by high-pressure and temperature dependent Raman scattering studies respectively. Raman studies under high pressure were carried out in a diamond anvil cell at room temperature which indicate a structural transition from cubic to hexagonal phase at and above 20.6 GPa. In the decompression cycle, YbO retained its high pressure phase. We have observed a Stark line in the Raman spectra at 337.5 cm−1 which arises from the electronic transition between 2 and 2 multiplates of Yb3+ (4 13) levels. These were followed by temperature dependent Raman studies in the range of 80–440 K, which show an unusual mode hardening with increasing temperature. The hardening of the most dominant mode ( + ) was analyzed in light of the theory of anharmonic phonon-phonon interaction and thermal expansion of the lattice. Using the mode Grüneisen parameter obtained from high pressure Raman measurements; we have calculated total anharmonicity of the + mode from the temperature dependent Raman data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/12/1.4858421.html;jsessionid=WXTcG5jU7Ft1WwDnF1m9U9pT.x-aip-live-06?itemId=/content/aip/journal/adva/3/12/10.1063/1.4858421&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/12/10.1063/1.4858421&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/12/10.1063/1.4858421'
Right1,Right2,Right3,