Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/2/10.1063/1.4790627
1.
1. S. Adhikari and S. Fernando, Ind. Eng. Chem. Res. 45, 875 (2006).
http://dx.doi.org/10.1021/ie050644l
2.
2. N. W. Ockwig and T. M. Nenoff, Chem. Rev. 107, 4078 (2007).
http://dx.doi.org/10.1021/cr0501792
3.
3. M. D. Dolan, J. Membrane Sci. 362, 12 (2010).
http://dx.doi.org/10.1016/j.memsci.2010.06.068
4.
4. H. R. Schober and A. M. Stoneham, Phys. Rev. Lett. 60, 2307 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.2307
5.
5. P. G. Sundell and G. Wahnström, Phys. Rev. B 70, 224301 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.224301
6.
6. H. Wipf, Physica Scripta. T94, 43 (2001).
http://dx.doi.org/10.1238/Physica.Topical.094a00043
7.
7. The Metal-Hydrogen Systmes (Springer: Berlin, 2005).
8.
8. Y. J. Li, S. E. Kulkova, Q. M. Hu, D. I. Bazhanov, D. S. Xu, Y. L. Hao, and R. Yang, Phys. Rev. B 76, 064110 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.064110
9.
9. Q. M. Hu, D. S. Xu, R. Yang, D. Li, and W. T. Wu, Phys. Rev. B 66, 064201 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.064201
10.
10. D. E. Eastman and J. K. Cashion, Phys. Rev. Lett. 27, 35 (1971).
http://dx.doi.org/10.1103/PhysRevLett.27.35
11.
11. S. Aboud and J. Wilcox, J. Phys. Chem. C. 114, 10978 (2010).
http://dx.doi.org/10.1021/jp911811r
12.
12. C. Ouyang and Y.-S. Lee, Phys. Rev. B 83, 045111 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.045111
13.
13. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964);
http://dx.doi.org/10.1103/PhysRev.136.B864
13.W. Kohn and L. J. Shan, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
14.
14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
15.
15. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
16.
16. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996);
http://dx.doi.org/10.1103/PhysRevB.54.11169
16.G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
17.
17. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
18.
18. V. A. Somenkov, I. R. Entin, A. Y. Chervyakov, S. Shilstein, and A. A. Chertkov, Sov. Phys. Solid State 13, 2178 (1972).
19.
19. C. G. Van de Walle and R. M. Martin, Phys. Rev. B 35, 8154 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.8154
20.
20. R. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York 1990).
21.
21. G. Henkelman, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 254 (2006);
http://dx.doi.org/10.1016/j.commatsci.2005.04.010
21.E. Sanville, S. D. Keny, R. Smith, and G. Henkelman, Comput. Chem 28, 899 (2007);
http://dx.doi.org/10.1002/jcc.20575
21.W. Tang, E. Sanville, G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).
http://dx.doi.org/10.1088/0953-8984/21/8/084204
22.
22. A. Janotti and C. G. Van de Walle, Nature Mat. 6, 44 (2007).
http://dx.doi.org/10.1038/nmat1795
23.
23. H. Ogawa, J. Phys. Chem. 114, 2134 (2010).
http://dx.doi.org/10.1021/jp906506z
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/2/10.1063/1.4790627
Loading
/content/aip/journal/adva/3/2/10.1063/1.4790627
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/2/10.1063/1.4790627
2013-02-01
2016-12-05

Abstract

We have investigated the effect of alloying metal elements on hydrogen solubility and mechanical integrity of Nb-based alloys, Nb 15M1 (where M = Ca–Zn, Ge), using first principles-based calculations. In general, the chemical interaction between the interstitial H and metal is weakened as the alloying element is changed from an early to a late transition metal, leading to lower H solubility and higher resistance to H embrittlement. This effect becomes more pronounced when a smaller alloying element is used due to stronger elastic interaction between interstitial H and metal atoms. These finding may provide scientific basis for rational design of Nb-based hydrogen separation membranes with tailored H solubility to effectively suppress H embrittlement while maintaining excellent hydrogen permeation rate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/2/1.4790627.html;jsessionid=_sSfy2I-o0pwNXuTLCp97FPi.x-aip-live-06?itemId=/content/aip/journal/adva/3/2/10.1063/1.4790627&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/2/10.1063/1.4790627&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/2/10.1063/1.4790627'
Right1,Right2,Right3,