Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Fiebig, Journal of Physics D: Applied Physics, 38(8), R123R152, 2005.
2. C. W. Nan, M. I. Bichurin, Shuxiang Dong, D. Viehland, and G. Srinivasan, Journal of Applied Physics, 103, 031101 (2008).
3. J. Ma, J. Hu, Z. Li, and C. W. Nan, Advanced Materials, 23, 1062 (2011).
4. H. Greve, E. Woltermann, H. J. Quenzer, B. Wagner, and E. Quandt, Applied Physics Letters, 96(18), 182501 (2010).
5. H. Greve, E. Woltermann, R. Jahns, S. Marauska, B. Wagner, R. Knöchel, M. Wuttig, and E. Quandt, Applied Physics Letters 97, 152503 (2010).
6. P. Zhao, Z. Zhao, D. Hunter, R. Suchoski, C. Gao, S. Mathews, M. Wuttig, and I. Takeuchi, Applied Physics Letters 94, 243507 (2009).
7. J. Y. Zhai, Z. P. Xing, S. Dong, J. F. Li, and D. Viehland, Applied Physics Letters 88, 062510 (2006).
8. T. D. Onuta, Y. Wang, C. J. Long, and I. Takeuchi, Applied Physics Letters 99, 203506 (2011).
9. M. I. Bichurin, V. M. Petrov, and G. Srinivasan, Physical Review B 68(5), 113 (2003).
10. M. I. Bichurin, D. A. Filippov, V. M. Petrov, V. V. Laletsin, N. Paddubnaya, and G. Srinivasan, Physical Review B 68, 132408 (2003).
11. V. M. Petrov, G. Srinivasan, M. I. Bichurin, and T. A. Galkina, Journal of Applied Physics 105(6), 063911 (2009).
12. S. Marauska, R. Jahns, H. Greve, E. Quandt, R. Knöchel, and B. Wagner, Journal of Micromechanics and Microengineering 22, 065024 (2012).
13. G. Srinivasan, E. Rasmussen, J. Gallegos, R. Srinivasan, Yu. Bokhan, and V. Laletin, Physical Review B 64(21), 16 (2001).
14. G. Srinivasan, E. Rasmussen, B. Levin, and R. Hayes, Physical Review B 65(13), 17 (2002).
15. S. Dong, J. Y. Zhai, Z. P. Xing, J. F. Li, and D. Viehland, Applied Physics Letters 86(10), 102901 (2005).
16. Y. K. Fetisov, A. A. Bush, K. E. Kamentsev, A. Y. Ostashchenko, and G. Srinivasan, “Ferrite-Piezoelectric Multilayers for Magnetic Field Sensors,” IEEE Sensors Journal 6(4), 935938 (2006).
17. E. Quandt and A. Ludwig, Journal of Applied Physics 85, 6232 (1999).
18. S. Zhong, S. P. Alpay, and J. V. Mantese, Applied Physics Letters 87, 102902 (2005).
19. N. Tiercelin, V. Preobrazhensky, P. Pernod, and A. Ostaschenko, Applied Physics Letters 92, 062904 (2008).
20. J. F. Blackburn, M. Vopsaroiu, and M. G. Cain, Journal of Applied Physics 104, 074104 (2008).
21. S. Dong and J. Y. Zhai, Chinese Science Bulletin 53, 2113 (2008).
22. M. Avellaneda and G. Harshe, Journal of Intelligent Material Systems and Structures 5(4), 501513 (1994).
23. X. Wang, E. Pan, J. D. Albrecht, and W. J. Feng, Composite Structures 87, 206 (2009).
24. J. G. Wan, Z. Y. Li, Y. Wang, M. Zeng, G. H. Wang, and J. M. Liu, Applied Physics Letters 86, 202504 (2005).
25. M. Guo and S. Dong, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 56(11), 25782586 (2009).
26. D. Hasanyan, J. Gao, Y. Wang, R. Viswan, M. Li, Y. Shen, J. Li, and D. Viehland, Journal of Applied Physics 112, 013908 (2012).
27. V. M. Petrov and G. Srinivasan, Physical Review B 78, 184421 (2008).
28. M. C. Krantz and M. Gerken, unpublished.
29. M. I. Bichurin and V. M. Petrov, Advances in Condensed Matter Physics 2012, 798310 (2012).
30. M. Brissaud, S. Ledren, and P. Gonnard, J. Micromech. Microeng. 13, 832 (2003).

Data & Media loading...


Article metrics loading...



Magnetoelectric (ME) coefficients for bending excitation in static magnetic fields and the bending response of multilayer composites with alternating magnetostrictive (MS) and piezoelectric (PE) layers on a substrate are investigated systematically. Theory and closed-form analytic solutions for the static magnetoelectric and the bending response coefficients are presented. Results of systematic variation of layer numbers, layer sequences, PE volume fractions, substrate thicknesses, and four different material systems (employing FeCoBSi, Terfenol-D, AlN, PZT, and Si) are given for a fixed total composite thickness of 5μm. Among more than 105 structures investigated the greatest static ME coefficient of 62.3 V/cmOe is predicted for all odd layer number FeCoBSi-AlN multilayer composites on a Si substrate at vanishing substrate thickness and a PE material fraction of 38%. Varying the substrate thickness from 0μm to 20μm and the PE fraction from 0% to 100%, broad parameter regions of high ME coefficients are found for odd and large layer number nanocomposites. These regions are further enhanced to narrow maxima at vanishing substrate thickness, which correspond to structures of vanishing static bending response. For bilayers and even layer number cases broad maxima of the ME coefficient are observed at nonzero substrates and bending response. The optimal layer sequence and PE fraction depend on the material system. Bending response maxima occur at zero Si substrate thickness and nonzero PE fractions for bilayers. For multilayers nonzero Si substrates and zero PE fractions are found to be optimal. Structures of even ME layer numbers of PE-MS...Sub layer sequence display regions of vanishing bending response with large ME coefficients, i.e., produced by longitudinal excitation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd