Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/2/10.1063/1.4790630
1.
1. M. Fiebig, Journal of Physics D: Applied Physics, 38(8), R123R152, 2005.
http://dx.doi.org/10.1088/0022-3727/38/8/R01
2.
2. C. W. Nan, M. I. Bichurin, Shuxiang Dong, D. Viehland, and G. Srinivasan, Journal of Applied Physics, 103, 031101 (2008).
http://dx.doi.org/10.1063/1.2836410
3.
3. J. Ma, J. Hu, Z. Li, and C. W. Nan, Advanced Materials, 23, 1062 (2011).
http://dx.doi.org/10.1002/adma.201003636
4.
4. H. Greve, E. Woltermann, H. J. Quenzer, B. Wagner, and E. Quandt, Applied Physics Letters, 96(18), 182501 (2010).
http://dx.doi.org/10.1063/1.3377908
5.
5. H. Greve, E. Woltermann, R. Jahns, S. Marauska, B. Wagner, R. Knöchel, M. Wuttig, and E. Quandt, Applied Physics Letters 97, 152503 (2010).
http://dx.doi.org/10.1063/1.3497277
6.
6. P. Zhao, Z. Zhao, D. Hunter, R. Suchoski, C. Gao, S. Mathews, M. Wuttig, and I. Takeuchi, Applied Physics Letters 94, 243507 (2009).
http://dx.doi.org/10.1063/1.3157281
7.
7. J. Y. Zhai, Z. P. Xing, S. Dong, J. F. Li, and D. Viehland, Applied Physics Letters 88, 062510 (2006).
http://dx.doi.org/10.1063/1.2172706
8.
8. T. D. Onuta, Y. Wang, C. J. Long, and I. Takeuchi, Applied Physics Letters 99, 203506 (2011).
http://dx.doi.org/10.1063/1.3662037
9.
9. M. I. Bichurin, V. M. Petrov, and G. Srinivasan, Physical Review B 68(5), 113 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.054402
10.
10. M. I. Bichurin, D. A. Filippov, V. M. Petrov, V. V. Laletsin, N. Paddubnaya, and G. Srinivasan, Physical Review B 68, 132408 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.132408
11.
11. V. M. Petrov, G. Srinivasan, M. I. Bichurin, and T. A. Galkina, Journal of Applied Physics 105(6), 063911 (2009).
http://dx.doi.org/10.1063/1.3087766
12.
12. S. Marauska, R. Jahns, H. Greve, E. Quandt, R. Knöchel, and B. Wagner, Journal of Micromechanics and Microengineering 22, 065024 (2012).
http://dx.doi.org/10.1088/0960-1317/22/6/065024
13.
13. G. Srinivasan, E. Rasmussen, J. Gallegos, R. Srinivasan, Yu. Bokhan, and V. Laletin, Physical Review B 64(21), 16 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.214408
14.
14. G. Srinivasan, E. Rasmussen, B. Levin, and R. Hayes, Physical Review B 65(13), 17 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.134402
15.
15. S. Dong, J. Y. Zhai, Z. P. Xing, J. F. Li, and D. Viehland, Applied Physics Letters 86(10), 102901 (2005).
http://dx.doi.org/10.1063/1.1881784
16.
16. Y. K. Fetisov, A. A. Bush, K. E. Kamentsev, A. Y. Ostashchenko, and G. Srinivasan, “Ferrite-Piezoelectric Multilayers for Magnetic Field Sensors,” IEEE Sensors Journal 6(4), 935938 (2006).
http://dx.doi.org/10.1109/JSEN.2006.877989
17.
17. E. Quandt and A. Ludwig, Journal of Applied Physics 85, 6232 (1999).
http://dx.doi.org/10.1063/1.370231
18.
18. S. Zhong, S. P. Alpay, and J. V. Mantese, Applied Physics Letters 87, 102902 (2005).
http://dx.doi.org/10.1063/1.2039990
19.
19. N. Tiercelin, V. Preobrazhensky, P. Pernod, and A. Ostaschenko, Applied Physics Letters 92, 062904 (2008).
http://dx.doi.org/10.1063/1.2841656
20.
20. J. F. Blackburn, M. Vopsaroiu, and M. G. Cain, Journal of Applied Physics 104, 074104 (2008).
http://dx.doi.org/10.1063/1.2988183
21.
21. S. Dong and J. Y. Zhai, Chinese Science Bulletin 53, 2113 (2008).
http://dx.doi.org/10.1007/s11434-008-0304-7
22.
22. M. Avellaneda and G. Harshe, Journal of Intelligent Material Systems and Structures 5(4), 501513 (1994).
http://dx.doi.org/10.1177/1045389X9400500406
23.
23. X. Wang, E. Pan, J. D. Albrecht, and W. J. Feng, Composite Structures 87, 206 (2009).
http://dx.doi.org/10.1016/j.compstruct.2008.01.006
24.
24. J. G. Wan, Z. Y. Li, Y. Wang, M. Zeng, G. H. Wang, and J. M. Liu, Applied Physics Letters 86, 202504 (2005).
http://dx.doi.org/10.1063/1.1935040
25.
25. M. Guo and S. Dong, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 56(11), 25782586 (2009).
http://dx.doi.org/10.1109/TUFFC.2009.1346
26.
26. D. Hasanyan, J. Gao, Y. Wang, R. Viswan, M. Li, Y. Shen, J. Li, and D. Viehland, Journal of Applied Physics 112, 013908 (2012).
http://dx.doi.org/10.1063/1.4732130
27.
27. V. M. Petrov and G. Srinivasan, Physical Review B 78, 184421 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.184421
28.
28. M. C. Krantz and M. Gerken, unpublished.
29.
29. M. I. Bichurin and V. M. Petrov, Advances in Condensed Matter Physics 2012, 798310 (2012).
30.
30. M. Brissaud, S. Ledren, and P. Gonnard, J. Micromech. Microeng. 13, 832 (2003).
http://dx.doi.org/10.1088/0960-1317/13/6/306
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/2/10.1063/1.4790630
Loading
/content/aip/journal/adva/3/2/10.1063/1.4790630
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/2/10.1063/1.4790630
2013-02-01
2016-09-29

Abstract

Magnetoelectric (ME) coefficients for bending excitation in static magnetic fields and the bending response of multilayer composites with alternating magnetostrictive (MS) and piezoelectric (PE) layers on a substrate are investigated systematically. Theory and closed-form analytic solutions for the static magnetoelectric and the bending response coefficients are presented. Results of systematic variation of layer numbers, layer sequences, PE volume fractions, substrate thicknesses, and four different material systems (employing FeCoBSi, Terfenol-D, AlN, PZT, and Si) are given for a fixed total composite thickness of 5μm. Among more than 105 structures investigated the greatest static ME coefficient of 62.3 V/cmOe is predicted for all odd layer number FeCoBSi-AlN multilayer composites on a Si substrate at vanishing substrate thickness and a PE material fraction of 38%. Varying the substrate thickness from 0μm to 20μm and the PE fraction from 0% to 100%, broad parameter regions of high ME coefficients are found for odd and large layer number nanocomposites. These regions are further enhanced to narrow maxima at vanishing substrate thickness, which correspond to structures of vanishing static bending response. For bilayers and even layer number cases broad maxima of the ME coefficient are observed at nonzero substrates and bending response. The optimal layer sequence and PE fraction depend on the material system. Bending response maxima occur at zero Si substrate thickness and nonzero PE fractions for bilayers. For multilayers nonzero Si substrates and zero PE fractions are found to be optimal. Structures of even ME layer numbers of PE-MS...Sub layer sequence display regions of vanishing bending response with large ME coefficients, i.e., produced by longitudinal excitation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/2/1.4790630.html;jsessionid=X-nJec23tomwI6YportEC5g5.x-aip-live-03?itemId=/content/aip/journal/adva/3/2/10.1063/1.4790630&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/2/10.1063/1.4790630&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/2/10.1063/1.4790630'
Right1,Right2,Right3,