1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Renormalization effects and phonon density of states in high temperature superconductors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/2/10.1063/1.4791762
1.
1. J. C. K. Hui and P. B. Allen, J.Phys. F4, L42 (1974).
http://dx.doi.org/10.1088/0305-4608/4/3/003
2.
2. G. D. Mahan and J. O. Sofo, Phys. Rev. B 47, 8050 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.8050
3.
3. J. K. Freericks, M. Jarrell, and G. D. Mahan, Phys. Rev. Lett. 77, 4588 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.4588
4.
4. J. K. Freericks, V. Zlatic, and M. Jarrell, Phys. Rev. B 61, R838 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.R838
5.
5. S. Fujita and S. Godoy, Theory of High Temperature Superconductivity (Kluwer Academic Publishers, New York, 2003).
6.
6. A. A. Maradudin, P. A. Flinn, and R. A. Coldwell-Horsefall, Ann. Phys. 15, 337 (1961);
http://dx.doi.org/10.1016/0003-4916(61)90188-9
6.A. A. Maradudin, P. A. Flinn and R. A. Coldwell-Horsefall, Ann. Phys. 15, 360 (1961);
http://dx.doi.org/10.1016/0003-4916(61)90189-0
6.P. A. Flinn and A. A. Maradudin, Ann. Phys. 22, 223 (1963).
http://dx.doi.org/10.1016/0003-4916(63)90054-X
7.
7. N. M. Plakida, V. L. Aksenov, and S. L. Drechsler, Europhys. Lett. 4, 1309 (1987).
http://dx.doi.org/10.1209/0295-5075/4/11/016
8.
8. J. E. Hirsch, Phys. Rev. B 47, 5351 (1993);
http://dx.doi.org/10.1103/PhysRevB.47.5351
8.J. E. Hirsch, Physica C 161, 185 (1989).
http://dx.doi.org/10.1016/0921-4534(89)90129-9
9.
9. A. S. Alexandrov, Physica C 158, 337 (1989).
http://dx.doi.org/10.1016/0921-4534(89)90226-8
10.
10. A. Bussmann-Holder and A. R. Bishop, Phys. Rev. B 44, 2853 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.9425
11.
11. D. M. Newns and C. C. Tsuei, Nature Physics 3, 184 (2007).
http://dx.doi.org/10.1038/nphys542
12.
12. A. A. Maradudin, Solid State Physics, Vols. 18 and 19, Eds., F. Seitz and D. Turnbull (Academic Press, New York, 1966), 273, pp. 1.
13.
13. R. W. H. Stevenson, Phonons in Perfect Lattice and Lattices with Point Imperfections (Oliver and Boyd, London, 1966).
14.
14. S. Conradson and I. D. Raistrick, Science 243, 1340 (1989).
http://dx.doi.org/10.1126/science.243.4896.1340
15.
15. De Mustre, J. Leon, S. D. Conradson, L. Batistic, A. R. Bishop, I. D. Raistrick, M. C. Aronson, and F. H. Garzon, Phys. Rev. B 45, 2447 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.2447
16.
16. D. Mihanjlovic and C. M. Foster, Solid State Commun. 74, 753 (1990).
http://dx.doi.org/10.1016/0038-1098(90)90929-6
17.
17. N. Poulakis, D. Palles, E. Liarokapis, K. Conder, E. Kaldis, and K. A. Muller, Phys. Rev.B 53, R534 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.R534
18.
18. L. R. Testardi, W. G. Moulton, H. Matials, H. K. Ng, and C. M. Rey, Phys. Rev. B 37, 2324 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.2324
19.
19. V. Müller, C. Hucho, and D. Maurer, J. Ferroelectrics 130, 45 (1992).
http://dx.doi.org/10.1080/00150199208019534
20.
20. R. Beyers, G. Lim, E. M. Engler, R. J. Savoy, T. M. Shaw, T. R. Dinger, W. J. Gallangher, and R. L. Sandstrom, Appl. Phys. Lett. 50, 1918 (1987).
http://dx.doi.org/10.1063/1.97686
21.
21. K. Hiraga, D. Shindo, M. Hirabayashi, M. Kikuchi, K. Oh-Ishi, and Y. Syono, Jpn. J Appl. Phys. 26, L1071 (1987).
http://dx.doi.org/10.1143/JJAP.26.L1071
22.
22. E. A. Hewat, M. Duputy, A. Bourret, J. J. Capponi, and M. Marezio, Nature 327, 400 (1987).
http://dx.doi.org/10.1038/327400a0
23.
23. A. Ourmazd and J. C. H. Spence, Nature 329, 425 (1987) .
http://dx.doi.org/10.1038/329425a0
24.
24. N. P. Huxford, D. J. Eaglesham, and C. J. Humphreys, Nature 329, 273 (1987).
http://dx.doi.org/10.1038/329812a0
25.
25. Vinod Ashokan, B. D. Indu, and A. Kr. Dimri, AIP Advances 1, 032101 (2011).
http://dx.doi.org/10.1063/1.3610642
26.
26. Keshav N. Shrivastava, Phys. Lett. A 113, 437 (1987).
http://dx.doi.org/10.1016/0375-9601(86)90668-7
27.
27. D. Feinburg, S. Ciouchi, and F. Pasquale de, Int. J. Mod. Phys. B 1, 1317 (1990).
http://dx.doi.org/10.1142/S0217979290000656
28.
28. S. N. Behra and S. G. Mishra, Phys. Rev. B 31, 2773 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.2773
29.
29. H. Frohlich, New Perspectives in Modern Physics, edited by R. E. Marshak (John Wiley, New York, 1966).
30.
30. B. D. Indu, Int. J. Mod. Phys. B 4, 1379 (1990);
http://dx.doi.org/10.1142/S021797929000067X
30.B. D. Indu, Mod Phys Letters B 26, 1665 (1992).
http://dx.doi.org/10.1142/S0217984992001368
31.
31. K. N. Pathak, Phys. Rev. 139, A1569 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A1569
32.
32. P. K. Sharma and Rita Bahadur, Phys. Rev. B 12, 1522 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.1522
33.
33. D. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960)
33.D. N. Zubarev, [English Transl: Sov. Phys. Uspehki 3, 320 (1960)].
http://dx.doi.org/10.1070/PU1960v003n03ABEH003275
34.
34. H. Lehmann, Nuovo Cimento 11, 342 (1954).
http://dx.doi.org/10.1007/BF02783624
35.
35. P. H. Dederichs, New concepts in the physics of phonons (1977).
36.
36. M. Arai, K. Yamada, Y. Hidaka, S. Itosh, Z. A. Bowden, A. D. Taylor, and Y. Endoh, Phys. Rev. Lett. 69, 359 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.359
37.
37. C. P. Painuli, B. P. Bahuguna, and B. D. Indu, Int. J. of Modern Phys. B 5, 2093 (1991).
http://dx.doi.org/10.1142/S021797929100081X
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/2/10.1063/1.4791762
Loading
/content/aip/journal/adva/3/2/10.1063/1.4791762
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/2/10.1063/1.4791762
2013-02-04
2014-08-23

Abstract

Using the versatile double time thermodynamic Green's function approach based on many body theory the renormalized frequencies, phonon energy line widths, shifts and phonon density of states (PDOS) are investigated via a newly formulated Hamiltonian (does not include BCS type Hamiltonian) that includes the effects of electron-phonon, anharmonicities and that of isotopic impurities. The automatic appearance of pairons, temperature, impurity and electron-phonon coupling of renormalized frequencies, widths, shifts and PDOS emerges as a characteristic feature of present theory. The numerical investigations on PDOS for the YBa 2 Cu 3 O 7 − δ crystal predicts several new feature of high temperature superconductors (HTS) and agreements with experimental observations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/2/1.4791762.html;jsessionid=lk5ou7ivekn2.x-aip-live-06?itemId=/content/aip/journal/adva/3/2/10.1063/1.4791762&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Renormalization effects and phonon density of states in high temperature superconductors
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/2/10.1063/1.4791762
10.1063/1.4791762
SEARCH_EXPAND_ITEM