1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Three-dimensional measurement of a tightly focused laser beam
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/2/10.1063/1.4791764
1.
1. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge, United Kingdom, 1999).
2.
2. B. Richards and E. Wolf, Proc. R. Soc. London A 253, 358 (1959).
http://dx.doi.org/10.1098/rspa.1959.0200
3.
3. L. Novotny, Principles of nano-optics (Cambridge University Press, 2006).
4.
4. S. Vyas, M. Niwa, Y. Kozawa, and S. Sato, J. Opt. Soc. Am. A 28, 13871394 (2011).
http://dx.doi.org/10.1364/JOSAA.28.001387
5.
5. H. Kang, B. Jia, and M. Gu, Opt. Express 18, 1081310821 (2010).
http://dx.doi.org/10.1364/OE.18.010813
6.
6. S. N. Khonina and I. Golub, Opt. Lett. 36, 352354 (2011).
http://dx.doi.org/10.1364/OL.36.000352
7.
7. E. Mudry, E. L. Moal, P. Ferrand, P. C. Chaumet, and A. Sentenac, Phys. Rev. Lett. 105, 203903 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.203903
8.
8. S. Hell and E. H. K. Stelzer, J. Opt. Soc. Am. A 9, 21592166 (1992).
http://dx.doi.org/10.1364/JOSAA.9.002159
9.
9. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935939 (2006).
http://dx.doi.org/10.1038/nature04592
10.
10. A. H. Firester, M. E. Heller, and P. Sheng, Appl. Opt. 16(7), 19711974 (1977).
http://dx.doi.org/10.1364/AO.16.001971
11.
11. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Claviere, E. A. Franke, and J. M. Franke, Appl. Opt. 10, 2775 (1971).
http://dx.doi.org/10.1364/AO.10.002775
12.
12. A. E. Siegman, M. W. Sasnett, and T. F. Johnston, IEEE J. Quantum Electron. 27, 10981104 (1991).
http://dx.doi.org/10.1109/3.83346
13.
13. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.233901
14.
14. R. Dorn, S. Quabis, and G. Leuchs, J. Mod. Opt. 50, 19171926 (2003).
http://dx.doi.org/10.1080/09500340308235246
15.
15. Y. Chiu and J. H. Pan, Opt. Express 15, 63676373 (2007).
http://dx.doi.org/10.1364/OE.15.006367
16.
16. J. Strohaber, G. Kaya, N. Kaya, N. Hart, A. A. Kolomenskii, G. G. Paulus, and H. A. Schuessler, Opt. Express 19, 1432114333 (2011).
http://dx.doi.org/10.1364/OE.19.014321
17.
17. K. Kitamura, K. Sakai, and S. Noda, Opt. Express 18, 45184525 (2010).
http://dx.doi.org/10.1364/OE.18.004518
18.
18. B. J. Pernick, Appl. Opt. 32, 36103613 (1993).
http://dx.doi.org/10.1364/AO.32.003610
19.
19. D. K. Cohen, B. Little, and F. S. Luecke, Appl. Opt. 23, 637640 (1984).
http://dx.doi.org/10.1364/AO.23.000637
20.
20. A. Naber, H. J. Maas, K. Razavi, and U. C. Fischer, Rev. Sci. Instrum. 70, 39553961, (1999).
http://dx.doi.org/10.1063/1.1150019
21.
21. J. Koglin, U. C. Fischer, and H. Fuchs, Phys. Rev. B 55, 79777984 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.7977
22.
22. D. W. Pohl and D. Courjon, Near Field Optics (Kluwer Acad demic, Dordrecht, 1993).
23.
23. R. C. Gonzalez and R. E. Woods, Digital image processing, 3rd ed. (Publishing House of Electronics Industry, Beijing, 2010).
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/2/10.1063/1.4791764
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

This figure will appear in color. (a) SEM image of a silicon wafer fragment with double edges and a 90° angle ultra-sharp tip, (b) the same fragment mounted on a detector with electronic circuitry for measurement.

Image of FIG. 2.

Click to view

FIG. 2.

This figure will appear in color. Experimental set-up for focused light beam measurement. Obj1: objective lens, 20×; Obj2: objective lens, 100×; Det1/Det2: detectors; SP: beam splitter.

Image of FIG. 3.

Click to view

FIG. 3.

This figure will appear in color. DKE scanning image of the focused beam in (a) reflection mode and (b) transmission mode, and (c) an intensity reconstruction of the focused beam. The R-square value for the surface fitting of (a) is 0.9984.

Image of FIG. 4.

Click to view

FIG. 4.

This figure will appear in color. The intensity distribution of the focused beam in the x and y directions. The inset shows the beam profile of the incident light measured before reaching Obj2.

Image of FIG. 5.

Click to view

FIG. 5.

This figure will appear in color. Beam profile reconstructions performed with a modified Canny detector for a LP incident light beam. Each image is 2.2 μm×2.2 μm in size. The z position is indicated in each panel.

Image of FIG. 6.

Click to view

FIG. 6.

This figure will appear in color. Incident beam profiles by (a) modeling, (b) theoretical calculation (4λ×4λ in size), (c)-(d) far field microscope imaging (about 4 μm×4 μm in size), and (e)-(h) beam profile reconstructions with SKET (2 μm×2 μm in size). The z position is indicated in each panel.

Tables

Generic image for table

Click to view

Table I.

surface fitting values for the DKE scanning images at difference planes. z is the distance from the focal plane. B and C are the FWHM of the focused beam in x and y directions respectively.

Loading

Article metrics loading...

/content/aip/journal/adva/3/2/10.1063/1.4791764
2013-02-04
2014-04-19

Abstract

The spatial structure of a tightly focused light field is measured with a double knife-edge scanning method. The measurement method is based on the use of a high-quality double knife-edge fabricated from a right-angled silicon fragment mounted on a photodetector. The reconstruction of the three-dimensional structures of tightly focused spots is carried out with both uniform and partially obstructed linearly polarized incident light beams. The optical field distribution is found to deviate substantially from the input beam profile in the tightly focused region, which is in good agreement with the results of numerical simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/2/1.4791764.html;jsessionid=1ei16nt0n9ed8.x-aip-live-06?itemId=/content/aip/journal/adva/3/2/10.1063/1.4791764&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Three-dimensional measurement of a tightly focused laser beam
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/2/10.1063/1.4791764
10.1063/1.4791764
SEARCH_EXPAND_ITEM