Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/2/10.1063/1.4791764
1.
1. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge, United Kingdom, 1999).
2.
2. B. Richards and E. Wolf, Proc. R. Soc. London A 253, 358 (1959).
http://dx.doi.org/10.1098/rspa.1959.0200
3.
3. L. Novotny, Principles of nano-optics (Cambridge University Press, 2006).
4.
4. S. Vyas, M. Niwa, Y. Kozawa, and S. Sato, J. Opt. Soc. Am. A 28, 13871394 (2011).
http://dx.doi.org/10.1364/JOSAA.28.001387
5.
5. H. Kang, B. Jia, and M. Gu, Opt. Express 18, 1081310821 (2010).
http://dx.doi.org/10.1364/OE.18.010813
6.
6. S. N. Khonina and I. Golub, Opt. Lett. 36, 352354 (2011).
http://dx.doi.org/10.1364/OL.36.000352
7.
7. E. Mudry, E. L. Moal, P. Ferrand, P. C. Chaumet, and A. Sentenac, Phys. Rev. Lett. 105, 203903 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.203903
8.
8. S. Hell and E. H. K. Stelzer, J. Opt. Soc. Am. A 9, 21592166 (1992).
http://dx.doi.org/10.1364/JOSAA.9.002159
9.
9. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935939 (2006).
http://dx.doi.org/10.1038/nature04592
10.
10. A. H. Firester, M. E. Heller, and P. Sheng, Appl. Opt. 16(7), 19711974 (1977).
http://dx.doi.org/10.1364/AO.16.001971
11.
11. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Claviere, E. A. Franke, and J. M. Franke, Appl. Opt. 10, 2775 (1971).
http://dx.doi.org/10.1364/AO.10.002775
12.
12. A. E. Siegman, M. W. Sasnett, and T. F. Johnston, IEEE J. Quantum Electron. 27, 10981104 (1991).
http://dx.doi.org/10.1109/3.83346
13.
13. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.233901
14.
14. R. Dorn, S. Quabis, and G. Leuchs, J. Mod. Opt. 50, 19171926 (2003).
http://dx.doi.org/10.1080/09500340308235246
15.
15. Y. Chiu and J. H. Pan, Opt. Express 15, 63676373 (2007).
http://dx.doi.org/10.1364/OE.15.006367
16.
16. J. Strohaber, G. Kaya, N. Kaya, N. Hart, A. A. Kolomenskii, G. G. Paulus, and H. A. Schuessler, Opt. Express 19, 1432114333 (2011).
http://dx.doi.org/10.1364/OE.19.014321
17.
17. K. Kitamura, K. Sakai, and S. Noda, Opt. Express 18, 45184525 (2010).
http://dx.doi.org/10.1364/OE.18.004518
18.
18. B. J. Pernick, Appl. Opt. 32, 36103613 (1993).
http://dx.doi.org/10.1364/AO.32.003610
19.
19. D. K. Cohen, B. Little, and F. S. Luecke, Appl. Opt. 23, 637640 (1984).
http://dx.doi.org/10.1364/AO.23.000637
20.
20. A. Naber, H. J. Maas, K. Razavi, and U. C. Fischer, Rev. Sci. Instrum. 70, 39553961, (1999).
http://dx.doi.org/10.1063/1.1150019
21.
21. J. Koglin, U. C. Fischer, and H. Fuchs, Phys. Rev. B 55, 79777984 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.7977
22.
22. D. W. Pohl and D. Courjon, Near Field Optics (Kluwer Acad demic, Dordrecht, 1993).
23.
23. R. C. Gonzalez and R. E. Woods, Digital image processing, 3rd ed. (Publishing House of Electronics Industry, Beijing, 2010).
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/2/10.1063/1.4791764
Loading
/content/aip/journal/adva/3/2/10.1063/1.4791764
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/2/10.1063/1.4791764
2013-02-04
2016-12-08

Abstract

The spatial structure of a tightly focused light field is measured with a double knife-edge scanning method. The measurement method is based on the use of a high-quality double knife-edge fabricated from a right-angled silicon fragment mounted on a photodetector. The reconstruction of the three-dimensional structures of tightly focused spots is carried out with both uniform and partially obstructed linearly polarized incident light beams. The optical field distribution is found to deviate substantially from the input beam profile in the tightly focused region, which is in good agreement with the results of numerical simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/2/1.4791764.html;jsessionid=TjIgVvjIzzn6gWqRDjJKu1NR.x-aip-live-06?itemId=/content/aip/journal/adva/3/2/10.1063/1.4791764&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/2/10.1063/1.4791764&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/2/10.1063/1.4791764'
Right1,Right2,Right3,