Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M.-C. Bellissent-Funel and J. Lai, J. Chem. Phys. 98, 1 (1993).
2. A. Bogdan, M. Kulmala, and N. Avramenko, Phys. Rev. Let. 81, 1042 (1998).
3. E. Tombari, G. Salvetti, C. Ferrari, and G. P. Johari, J. Chem. Phys. 122, 104712 (2005).
4. T. Takamuku, M. Yamagami, H. Wakita, Y. Masuda, and T. Yamaguchi, J. Phys.Chem. B 101, 5730 (1997).
5. D. C. Steytler, J. C. Dore, and C. J. Wright, J. Phys. Chem. 87, 2458 (1983).
6. H. K. Christenson, J. Phys. Condens. Matters 13, R95 (2001).
7. T. Yanagisawa, T. Shimizu, K. Kuroda, and C. Kato, Bull. Chem. Soc. Jpn. 63, 988 (1990).
8. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. C. Vartuli, Nature 359, 710 (1992).
9. K. Schumacher, P. I. Ravikovitch, A. Du DChesne, A. V. Neimark, and K. K. Unger, Langmuir 16, 4648 (2000).
10. D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science 279, 548 (1998).
11. D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, and G. D. Stucky, J. Amer. Chem. Soc. 120, 548552 (1998).
12. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin, and R. Ryoo, Nature 408, 449 (2000).
13. F. Kleitz, D. Liu, G. M. Anikumar, I.-S. Park, I. A. Solovyov, A. N. Shmakov, and R. Ryoo, J. Phys. Chem. B 107, 14296 (2003).
14. C. Yu, Y. Yu, and D. Zhao, Chem. Commun., 575 (2000).
15. M. Kruk and C. M. Hui, Microporous Mesoporous Mater. 114, 64 (2008).
16. C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, J. Phys. Condens. Matter 18, R15R68 (2006).
17. R. Denoyel, R. J. M. Pellenq, and I. Beuroies, Proc. FOA7, edited by K. Kaneko, H. Kano, and Y. Hanzawa, 2001, pp. 967, Nagasaki, Japan.
18. K. Morishige and H. Uematsu, J. Chem. Phys. 122, 044711 (2005).
19. A. Schreiber, I. Ketelsen, and G. H. Findenegg, Phys. Chem. Chem. Phys. 3, 1185 (2001).
20. S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, and T. Yamaguchi, Phys. Chem. Chem. Phys. 8, 3223 (2006).
21. K. Morishige and H. Iwasaki, Langmuir 19, 2808 (2003).
22. P. Smirnov, T. Yamaguchi, S. Kittaka, S. Takahara, and Y. Kuroda, J. Phys. Chem. B 104, 5498 (2000).
23. A. Faraone, L. Liu, C.-Y. Mou, C.-W. Yen, and S.-H. Chen, J. Chem. Phys. 121, 10843 (2004).
24. K. Yoshida, T. Yamaguchi, S. Kittaka, M.-C. Bellissent-Funel, and P. Fouquet, J. Chem. Phys. 129, 054702 (2008).
25. K. Yoshida, T. Yamaguchi, S. Kittaka, M.-C. Bellissent-Funel, and P. Fouquet, J. Phys. Condensed Mat. 24, 064101 (2012).
26. S. Kittaka, K. Sou, T. Yamaguchi, and K. Tozaki, Phys. Chem. Chem. Phys. 11, 8538 (2009).
27. S. Kittaka, A. Serizawa, T. Iwashita, S. Takahara, T. Takenaka, Y. Kuroda, and T. Mori, Surf. Sci. Catl. 132, 653 (2001).
28. T. Takamuku, H. Maruyama, S. Kittaka, S. Takahara, and T. Yamaguchi, J. Phys. Chem. B 109, 892 (2005).
29. S. Takahara, S. Kittaka, T. Mori, Y. Kuroda, T. Takamuku, and T. Yamaguchi, J. Phys. Chem. C 112, 14385 (2008).
30. M. Okazaki, K. Toriyama, N. Sawaguchi, and K. Oda, Bull. Chem. Soc. Jpn. 77, 87 (2004).
31. T. Mori, Y. Kuroda, Y. Yoshikawa, M. Nagao, and S. Kittaka, Langmuir 18, 1595 (2002).
32. D. Dollimore and G. R. Heal, J. Appl. Chem. 14, 109 (1964).
33. J. Sjöström, J. Swenson, R. Bergman, and S. Kittaka, J. Chem. Phys. 128, 154503 (2008).
34. K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).
35. J. Schüller, R. Richert, and E. W. Fischer, Phys. Rev. B 52, 15232 (1995).
36. D. W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484 (1951).
37. S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mori, H. Hamano, and T. Yamaguchi, J. Phys. Chem. 103, 5814 (1999).

Data & Media loading...


Article metrics loading...



Two dynamic phases were recognized on the 1-propanol molecules confined in MCM-41 with pore diameters d = 2.1, 2.4, 2.7 and 3.6 nm by dielectric measurements, in which two types of confined states of liquid were investigated: surface-adsorbed (sa) and pore-filled (pf) liquid. The dielectric measurements in the frequency range 103–107 Hz and temperature range 120–300 K showed that the molecular motions became slower in the following order: bulk, pf and sa liquid, which is the same order as for methanol and ethanol confined in MCM-41 reported previously. For pf samples, two relaxation components, which correspond to molecules near the pore surface and at the center of the pores, were observed separately. This is somewhat different from the behavior of methanol and ethanol confined as pf state in which two relaxation components were also detected but a clear separation between them was not observed. This implies that 1-propanol molecules near the pore wall interact weakly with those at the central part of the pores. For the MCM-41 sample with the smallest pore diameter (d = 2.1 nm), however, the dielectric spectra of the pf sample were very similar to those of the sa sample. That is, the dynamic motion of molecules in the pf sample was inhibited by narrow space surrounded by monolayer molecules similarly to that in the sa sample.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd