Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/2/10.1063/1.4792940
1.
1. E. Delamarche, D. Juncker, and H. Schmid, Adv. Mater. 17(24), 29112933 (2005).
http://dx.doi.org/10.1002/adma.200501129
2.
2. E. Verpoorte, Electrophoresis 23(5), 677712 (2002).
http://dx.doi.org/10.1002/1522-2683(200203)23:5<677::AID-ELPS677>3.0.CO;2-8
3.
3. S. Oberti, D. Moller, A. Neild, J. Dual, F. Beyeler, B. J. Nelson, and S. Gutmann, Ultrasonics 50(2), 247257 (2010).
http://dx.doi.org/10.1016/j.ultras.2009.09.004
4.
4. G. H. W. Sanders and A. Manz, TrAC, Trends Anal. Chem. 19(6), 364378 (2000).
http://dx.doi.org/10.1016/S0165-9936(00)00011-X
5.
5. P. Luginbuhl, P. F. Indermuhle, M. A. Gretillat, F. Willemin, N. F. de Rooij, D. Gerber, G. Gervasio, J. L. Vuilleumier, D. Twerenbold, M. Duggelin, D. Mathys, and R. Guggenheim, Sens. Actuators, B 63(3), 167177 (2000).
http://dx.doi.org/10.1016/S0925-4005(00)00354-3
6.
6. T. Lilliehorn, M. Nilsson, U. Simu, S. Johansson, M. Almqvist, J. Nilsson, and T. Laurell, Sens. Actuators, B 106(2), 851858 (2005).
http://dx.doi.org/10.1016/j.snb.2004.07.003
7.
7. J. C. Rife, M. I. Bell, J. S. Horwitz, M. N. Kabler, R. C. Y. Auyeung, and W. J. Kim, Sens. Actuators, A 86(1–2), 135140 (2000).
http://dx.doi.org/10.1016/S0924-4247(00)00433-7
8.
8. P. Woias, Sens. Actuators, B 105(1), 2838 (2005).
http://dx.doi.org/10.1016/j.snb.2004.02.033
9.
9. S. Oberti, A. Neild, and T. Wah Ng, Lab on a Chip 9(10), 14351438 (2009).
http://dx.doi.org/10.1039/b819739c
10.
10. J. N. Tan and A. Neild, AIP Advances 2(3), 032160 (2012).
http://dx.doi.org/10.1063/1.4750483
11.
11. H. Gau, S. Herminghaus, P. Lenz, and R. Lipowsky, Science 283(5398), 4649 (1999).
http://dx.doi.org/10.1126/science.283.5398.46
12.
12. F. Gattiker, F. Umbrecht, J. Neuenschwander, U. Sennhauser, and C. Hierold, Sens. Actuators, A 145, 291298 (2008).
http://dx.doi.org/10.1016/j.sna.2007.09.003
13.
13. P. Rogers and A. Neild, Lab on a chip 11(21), 37103715 (2011).
http://dx.doi.org/10.1039/c1lc20459a
14.
14. B. Zhao, J. S. Moore, and D. J. Beebe, Anal. Chem. 74, 42594268 (2002).
http://dx.doi.org/10.1021/ac020269w
15.
15. D. Dutta, A. Ramachandran, and D. T. Leighton, Microfluid. Nanofluid. 2(4), 275290 (2006).
http://dx.doi.org/10.1007/s10404-005-0070-7
16.
16. R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, Proc. Natl. Acad. Sci. U. S. A. 102, 18481852 (2005).
http://dx.doi.org/10.1073/pnas.0407721102
17.
17. S. Oberti, A. Neild, R. Quach, and J. Dual, Ultrasonics 49(1), 4752 (2009).
http://dx.doi.org/10.1016/j.ultras.2008.05.002
18.
18. Y. F. Chen, F. G. Tseng, S. Y. ChangChien, M. H. Chen, R. J. Yu, and C. C. Chieng, Microfluid. Nanofluid. 5(2), 193203 (2008).
http://dx.doi.org/10.1007/s10404-007-0237-5
19.
19. B. Zhao, J. S. Moore, and D. J. Beebe, Science 291(5506), 10231026 (2001).
http://dx.doi.org/10.1126/science.291.5506.1023
20.
20. H. Gau, Science 283(5398), 4649 (1999).
http://dx.doi.org/10.1126/science.283.5398.46
21.
21. N. Davey and A. Neild, J. Colloid Interface Sci. 357(2), 534540 (2011).
http://dx.doi.org/10.1016/j.jcis.2011.02.022
22.
22. J. W. Gibbs, The Scientific Papers of J. Willard Gibbs (Longmans, Green and Company, 1906).
23.
23. L. Xu, A. Neild, T. W. Ng, and F. F. Shao, Appl. Phys. Lett. 95(15), 153501 (2009).
http://dx.doi.org/10.1063/1.3249582
24.
24. J. Koplik, T. S. Lo, M. Rauscher, and S. Dietrich, Phys. Fluids 18(3), 032104 (2006).
http://dx.doi.org/10.1063/1.2178786
25.
25. M. Rauscher, S. Dietrich, and J. Koplik, Phys. Rev. Lett. 98(22), 224504 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.224504
26.
26. S. K. Cho, H. J. Moon, and C. J. Kim, J. Microelectromech. Syst. 12(1), 7080 (2003).
http://dx.doi.org/10.1109/JMEMS.2002.807467
27.
27. D. J. Harrison, K. Fluri, K. Seiler, Z. H. Fan, C. S. Effenhauser, and A. Manz, Science 261(5123), 895897 (1993).
http://dx.doi.org/10.1126/science.261.5123.895
28.
28. A. Renaudin, P. Tabourier, V. Zhang, J. C. Camart, and C. Druon, Sens. Actuators, B 113(1), 389397 (2006).
http://dx.doi.org/10.1016/j.snb.2005.03.100
29.
29. X. X. Bai, J. Josserand, H. Jensen, J. S. Rossier, and H. H. Girault, Anal. Chem. 74(24), 62056215 (2002).
http://dx.doi.org/10.1021/ac025920+
30.
30. L. Kondic and J. Diez, Phys. Fluids 13(11), 3168 (2001).
http://dx.doi.org/10.1063/1.1409965
31.
31. K. R. Mecke, J. Phys.: Condens. Matter 13, 46154636 (2001).
http://dx.doi.org/10.1088/0953-8984/13/21/302
32.
32. R. Seemann, S. Herminghaus, and K. Jacobs, Phys. Rev. Lett. 86(24), 55345537 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5534
33.
33. J. A. Diez, A. G. Gonzaález, and L. Kondic, Phys. Fluids 21(8), 082105 (2009).
http://dx.doi.org/10.1063/1.3211248
34.
34. H. A. Stone and S. Kim, AIChE J. 47(6), 12501254 (2001).
http://dx.doi.org/10.1002/aic.690470602
35.
35. M. J. Jensen, G. Goranovic, and H. Bruus, J. Micromech. Microeng. 14(7), 876883 (2004).
http://dx.doi.org/10.1088/0960-1317/14/7/006
36.
36. S. S. Wang, Z. J. Jiao, X. Y. Huang, C. Yang, and N. T. Nguyen, Microfluid. Nanofluid. 6(6), 847852 (2008).
http://dx.doi.org/10.1007/s10404-008-0357-6
37.
37. M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, Lab on a chip 7(11), 14791489 (2007).
http://dx.doi.org/10.1039/b706549c
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/2/10.1063/1.4792940
Loading
/content/aip/journal/adva/3/2/10.1063/1.4792940
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/2/10.1063/1.4792940
2013-02-14
2016-12-07

Abstract

Open fluidic systems have a distinct advantage over enclosed channels in that the fluids exposed nature makes for easy external interaction, this finds uses in introduction of samples by adding liquid droplets or from the surrounding gaseous medium. This work investigates flowing open channels and films, which can potentially make use of the open section of the system as an external interface, before bringing the sample into an enclosed channel. Clearly, in this scenario a key factor is the stability of the flowing open fluid. The open channels investigated include a straight open channel defined by a narrow strip of solid surface, the edges of which allow large contact angle hysteresis, and a wider structure allowing for multiple inputs and outputs. A model is developed for fluid flow, and the findings used to describe the process of failure in both cases.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/2/1.4792940.html;jsessionid=uXWYZds91fvLG-uRDENRleJm.x-aip-live-02?itemId=/content/aip/journal/adva/3/2/10.1063/1.4792940&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/2/10.1063/1.4792940&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/2/10.1063/1.4792940'
Right1,Right2,Right3,