Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, Nat. Photonics 4, 648 (2010).
2. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, and R. Raj, J. Opt. Soc. Am. B 27, 2146 (2010).
3. J. Kim, A. Shinya, K. Nozaki, H. Taniyama, C. H. Chen, T. Sato, S. Matsuo, and M. Notomi, Opt. Express 20, 11643 (2012).
4. M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, IET Circuits Devices & Systems 5, 84 (2011).
5. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
6. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
7. R. Kappeler, P. Kaspar, and H. Jackel, J. Lightwave Technol. 29, 3156 (2011).
8. A. Larrue, D. Belharet, P. Dubreuil, S. Bonnefont, O. Gauthier-Lafaye, A. Monmayrant, F. Lozes-Dupuy, and S. Moumdji, J. Vac. Sci. Technol. B 29, 021006 (2011).
9. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, Nat. Photonics 5, 297 (2011).
10. G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, Nat. Commun. 2, 539 (2011).
11. N. Shahid, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, J. Vac. Sci. Technol. B 29, 031202 (2011).
12. P. Strasser, R. Wuest, F. Robin, D. Erni, and H. Jackel, J. Vac. Sci. Technol. B 25, 387 (2007).
13. M. Mulot, S. Anand, M. Swillo, M. Qiu, B. Jaskorzynska, and A. Talneau, J. Vac. Sci. Technol. B 21, 900 (2003).
14. M. V. Kotlyar, L. O’Faolain, R. Wilson, and T. F. Krauss, J. Vac. Sci. Technol. B 22, 1788 (2004).
15. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004).
16. Q. M. Quan, I. Bulu, and M. Loncar, Phys. Rev. A 80, 011810 (2009).
17. X. Wang, C. Lin, S. Chakravarty, J. Luo, A. K. Y. Jen, and R. T. Chen, Opt. Lett. 36, 882 (2011).
18. W. C. Lai, S. Chakravarty, X. L. Wang, C. Y. Lin, and R. T. Chen, Opt. Lett. 36, 984 (2011).
19. M. G. Scullion, A. Di Falco, and T. F. Krauss, Biosens. Bioelectron. 27, 101 (2011).
20. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, Nature 459, 550 (2009).
21. S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, Opt. Express 19, 17683 (2011).
22. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, Phys. Rev. Lett. 95, 143901 (2005).
23. M. Mulot, S. Anand, R. Ferrini, B. Wild, R. Houdre, J. Moosburger, and A. Forchel, J. Vac. Sci. Technol. B 22, 707 (2004).
24. A. Berrier, M. Mulot, S. Anand, A. Talneau, R. Ferrini, and R. Houdre, J. Vac. Sci. Technol. B 25, 1 (2007).
25. F. Pommereau, L. Legouezigou, S. Hubert, S. Sainson, J. P. Chandouineau, S. Fabre, G. H. Duan, B. Lombardet, R. Ferrini, and R. Houdre, J. Appl. Phys. 95, 2242 (2004).
26. K. Y. Cui, Y. D. Huang, G. Y. Zhang, Y. Z. Li, X. Tang, X. Y. Mao, Q. Zhao, W. Zhang, and J. D. Peng, Appl. Phys. Lett. 95, 191901 (2009).
27. K. Y. Cui, Q. Zhao, X. Feng, Y. D. Huang, Y. Z. Li, D. Wang, and W. Zhang, Appl. Phys. Lett. 100, 201102 (2012).
28. N. Shahid, N. Speijcken, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, Appl. Phys. Lett. 98, 081112 (2011).
29. M. Qiu, M. Swillo, M. Mulot, S. Anand, B. Jaskorzynska, A. Karlsson, and L. Thylén, Proc. SPIE 4905, 22 (2002).
30. T. Yoshikawa, S. Kohmoto, M. Anan, N. Hamao, M. Baba, N. Takado, Y. Sugimoto, M. Sugimoto, and K. Asakawa, Jpn J. Appl. Phys. 31, 4381 (1992).
31. T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta, and T. Baba, Jpn J. Appl. Phys. 45, L102 (2006).
32. A. Matsutani, H. Ohtsuki, S. Muta, F. Koyama, and K. Iga, Jpn J. Appl. Phys. 40, 1528 (2001).
33. K. Y. Cui, X. Feng, Y. D. Huang, Q. Zhao, Z. L. Huang, and W. Zhang, Appl. Phys. Lett. 101, 151110 (2012).
34. S. Olivier, H. Benisty, C. Weisbuch, C. Smith, T. F. Krauss, and R. Houdre, Opt. Express 11, 1490 (2003).
35. K. Y. Cui, Y. D. Huang, W. Zhang, and J. D. Peng, J. Lightwave Technol. 26, 1492 (2008).
36. H. Wang, M. H. Sun, K. Ding, M. T. Hill, and C. Z. Ning, Nano Lett. 11, 1646 (2011).

Data & Media loading...


Article metrics loading...



Double-slot photonic crystal waveguide (PCW) in InP heterostructure is fabricated by inductively coupled plasma (ICP) etching. Due to using an ultra-low pressure of 0.05 Pa, etch depths up to 3.5 μm for holes with diameter of 200 nm and 1.8 μm for slots of ∼40 nm are achieved, which indicate a record-high aspect-ratio, i.e. 45, for such narrow slots in InP heterostructure. Moreover, etching quality is evaluated based on both the transmission performance and the linewidth of micro-photoluminescence (μ-PL). In our measurement, a structure-dependent transmission-dip about 17 dB is obtained from a 17-μm-long W3 PCW, and a PL widening as small as 19 nm compared to the corresponding wafer is observed. These promising experimental results evidence the high etching quality realized in this work and confirm the feasibility of etching small-feature-size patterns by ICP technology for InP based devices in future mono-/hetero-integrated photonic circuits.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd