Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/2/10.1063/1.4793208
1.
1. D. Pavlov, Lead Acid Batteries: Science and Technology (Elsevier B.V., 2011).
2.
2. M. Barak, Electrochemical Power Source (The Institution of Electrical Engineers, London, 1980), p. 222.
3.
3. S. Radhankrishnan, M. N. Kamalasanan, and P. C. Mehendru, Journal of Materials Science 18, 1912 (1983).
http://dx.doi.org/10.1007/BF00554982
4.
4. M. Baleva and V. Tuncheva, J. Mater. Sci. Lett. 13, 3 (1994).
http://dx.doi.org/10.1007/BF00680256
5.
5. T. L. Blair, Journal of Power Sources 73, 47 (1998).
http://dx.doi.org/10.1016/S0378-7753(97)02781-X
6.
6. G. Trinquire and R. Hoffmann, J. Phys. Chem. 88, 6696 (1984).
http://dx.doi.org/10.1021/j150670a038
7.
7. M. Salavati-Niasari, F. Mohandes, and F. Davar, Polyhedron 28, 2263 (2009).
http://dx.doi.org/10.1016/j.poly.2009.04.009
8.
8. X. Jiang, Y. Wang, T. Herricks, and Y. Xia, Journal of Materials Chemistry 14, 695 (2004).
http://dx.doi.org/10.1039/b313938g
9.
9. P. M. Ajayan and S. Lijima, Nature 361, 333 (1993).
http://dx.doi.org/10.1038/361333a0
10.
10. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Appl. Phys. Lett. 14, 309 (2002).
http://dx.doi.org/10.1063/1.1432749
11.
11. Y. L. Wang, T. Herricks, and Y. Xia, Nano Letters 3, 1163 (2003).
http://dx.doi.org/10.1021/nl034398j
12.
12. Y. L. Wang, X. Jiang, T. Herricks, and Y. Xia, J. Phys. Chem. B 108, 8631 (2004).
http://dx.doi.org/10.1021/jp036758x
13.
13. J. I. Pankov, Optical Processes in Semiconductors (Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971).
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/2/10.1063/1.4793208
Loading
/content/aip/journal/adva/3/2/10.1063/1.4793208
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/2/10.1063/1.4793208
2013-02-13
2016-09-29

Abstract

The effect of an oxidizing environment on the phase formation of lead oxide nanowires is reported. The phase structure, optical properties, sizes and morphologies of the nanowires have been investigated by atomic force microscopy, x-ray diffraction, and UV—Vis-NIR reflectance diffusion spectrums. The phase structure of the lead oxide nanowires is very sensitive to both the process temperature and the oxygen flow/oxygen partial pressure. Single phase oxide nanowires can be obtained only in a narrow, low temperature range and within a low oxygen partial pressure. The wire morphology of Pb nanowires has been perfectly maintained after being oxidized.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/2/1.4793208.html;jsessionid=s8gqpv0yztL5zzbLeCzTKm1g.x-aip-live-03?itemId=/content/aip/journal/adva/3/2/10.1063/1.4793208&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/2/10.1063/1.4793208&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/2/10.1063/1.4793208'
Right1,Right2,Right3,