Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/2/10.1063/1.4794155
1.
1. F. X. Redl, K. S. Cho, C. B. Murray, and S. O’Brien, Nature 423, 968 (2003).
http://dx.doi.org/10.1038/nature01702
2.
2. M. Wagner, U. Merkt, and A. V. Chaplik, Phys. Rev. B 45, 1951 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.1951
3.
3. O. Ciftja, J. Phys.: Condens. Matter. 19, 046220 (2007).
http://dx.doi.org/10.1088/0953-8984/19/4/046220
4.
4. A. Harju, V. A. Sverdlov, B. Barbiellini, and R. M. Nieminen, Physica B: Condensed Matter 255, 145149 (1998).
http://dx.doi.org/10.1016/S0921-4526(98)00461-X
5.
5. (a)U. Merkt, J. Huser, and M. Wagner, Phys. Rev. B 43, 7320 (1991);
http://dx.doi.org/10.1103/PhysRevB.43.7320
5.(b)Orion Ciftja and M. Golam Faruk, Phys. Rev. B 72, 205334 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205334
6.
6. T. Ezaki, N. Mori, and C. Hamaguchi, Phys. Rev. B 56, 6428 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.6428
7.
7. P. Dutta, S. Pal, M. S. Seehra, M. Anand, and C. B. Robarts, Appl. Phys. Lett. 90, 213102 (2007).
http://dx.doi.org/10.1063/1.2740577
8.
8. S. Zhou, Q. Xu, K. Potzger, G. Talut, R. Grotzschel, J. Fassbender, M. Kinnchenko, J. Grenzer, and M. Helm, Appl. Phys. Lett. 93, 232507 (2008).
http://dx.doi.org/10.1063/1.3048076
9.
9. M. A. Garcia, J. M. Merino, E. Fernandez Pinel, A. Quesada, J. De La Venta, M. L. Ruiz Gonzalez, G. R. Castro, P. Crespo, J. Liopic, J. M. Gonzarez - Calbet, and A. Hernando, Nano Lett. 2, 1489 (2007).
http://dx.doi.org/10.1021/nl070198m
10.
10. Naohito Tsujii, Hideaki Kitazawa, and Giyuu Kido, J. Appl. Phys. 93, 6957 (2003).
http://dx.doi.org/10.1063/1.1540034
11.
11. J. Blasco, F. Bartolome, L. M. Garcia, and J. Garcia, J. Mater. Chem. 16, 2282 (2006).
http://dx.doi.org/10.1039/b518418e
12.
12. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawaski, P. Ahmet, T. Chikyow, S. Y. Koshihara, and H. Koinuma, Science 291, 854 (2001).
http://dx.doi.org/10.1126/science.1056186
13.
13. Nguyen Hoa Hong, C.-K. Park, A. T. Raghavender, O. Ciftja, N. S. Bingham, M. H. Phan, and H. Srikanth, J. Appl. Phys. 111, 07C302 (2012).
http://dx.doi.org/10.1063/1.3670577
14.
14. H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett. 99, 127201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.127201
15.
15. J. G. Tao, L. X. Guan, J. S. Pan, C. H. A. Huan, L. Wang, J. L. Kuo, Z. Zhang, J. W. Chai, and S. J. Wang, Appl. Phys. Lett. 95, 062505 (2009).
http://dx.doi.org/10.1063/1.3204463
16.
16. Santa Chawla, K. Jayanthi, and R. K. Kotnala, J. Appl. Phys. 106, 113923 (2009).
http://dx.doi.org/10.1063/1.3261722
17.
17. L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and S. Zhou, Appl. Phys. Lett. 98, 222508 (2011).
http://dx.doi.org/10.1063/1.3597629
18.
18. J. Osorio-Guillén, S. Lany, S. V. Barabash, and A. Zunger, Phys. Rev. Lett. 96, 107203 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.107203
19.
19. R. Höhne and P. Esquinazi, Adv. Mater. 14, 753 (2002).
http://dx.doi.org/10.1002/1521-4095(20020517)14:10<753::AID-ADMA753>3.0.CO;2-D
20.
20. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, Nano Lett. 9, 220 (2009).
http://dx.doi.org/10.1021/nl802810g
21.
21. C. Moyses Araujo, M. Kapilashrami, X. Jun, O. D. Jayakumar, S. Nagar, Y. Wu, C. Århammar, B. Johansson, L. Belova, R. Ahuja, G. A. Gehring, and K. V. Rao, Appl. Phys. Lett. 96, 232505 (2010).
http://dx.doi.org/10.1063/1.3447376
22.
22. K. Noami, Y. Muraoka, T. Wakita, M. Hirai, Y. Kato, T. Muro, Y. Tamenori, and T. Yokoya, J. Appl. Phys. 107, 073910 (2010).
http://dx.doi.org/10.1063/1.3369500
23.
23. H. Hong, Joe Sakai, Nathalie Poirot, and Virginie Brizé, Phys. Rev. B 73, 132404 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.132404
24.
24. J. M. D. Coey, J. T. Mlack, M. Venkatesan, and P. Stamenov, IEEE T Magn. 46, 2501 (2010).
http://dx.doi.org/10.1109/TMAG.2010.2041910
25.
25. M. A. Garcia, F. Jimenez-Villacorta, A. Quesada, J. de la Venta, N. Carmona, I. Lorite, J. Llopis, and J. F. Fernandez, J Appl Phys. 107, 043906 (2010).
http://dx.doi.org/10.1063/1.3294649
26.
26. J. M. D. Coey, K. Wongsaprom, J. Alaria, and M. Venkatesan, J Phys D Appl Phys. 41, 134012 (2008).
http://dx.doi.org/10.1088/0022-3727/41/13/134012
27.
27. M. S. Martin-Gonzalez, M. A. Garcia, I. Lorite, J. L. Costa-Kramer, F. Rubio-Marcos, N. Carmona, and J. F. Fernandez, J Electrochem Soc. 157, E31 (2010).
http://dx.doi.org/10.1149/1.3272638
28.
28. Y. Zhu, C. L. Du, D. N. Shi, K. C. Zhang, C. L. Ma, S. J. Gong, and Z. Q. Yang, J. Appl. Phys. 109, 073913 (2011).
http://dx.doi.org/10.1063/1.3565051
29.
29. D. C. Kundaliya, S. B. Ogale, S. E. Lofland, S. Dhar, C. J. Metting, S. R. Shinde, Z. Ma, B. Varughese, K. V. Ramanujachary, L. Salamanca-Riba, and T. Venkatesan, Nature Materials 3, 709 (2004).
http://dx.doi.org/10.1038/nmat1221
30.
30. D. Berardan, E. Guilmeau, and D. Pelloquin, J. Magn. Magn. Mater. 320, 983 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.10.002
31.
31. J. M. D. Coey, Curr Opin Solid St M. 10, 83 (2006).
http://dx.doi.org/10.1016/j.cossms.2006.12.002
32.
32. M. Valant, T. Kolodiazhnyi, Anna-Karin Axelsson, G. S. Babu, and N. M. Alford, Chem. Mater. 22, 1952 (2010).
http://dx.doi.org/10.1021/cm100017s
33.
33. B. B. Kale, Jin-Ook Baeg, S. K. Apte, R. S. Sonawane, S. D. Naik, and K. R. Patil, J. Mater. Chem. 17, 4297 (2007).
http://dx.doi.org/10.1039/b708269j
34.
34. Y. M. Azhniuk, A. V. Gomonnai, Y. I. Hutych, V. V. Lopushansky, I. I. Turok, V. O. Yukhymchuk, and D. R. T. Zahn, J. Appl. Phys. 107, 113528 (2010).
http://dx.doi.org/10.1063/1.3409111
35.
35. H. Liu, Q. Liu, and X. Zhao, Mater. Charact. 58, 96 (2007).
http://dx.doi.org/10.1016/j.matchar.2006.04.003
36.
36. Y. M. Azhniuk, A. V. Gomonnai, Y. I Hutych, V. V. Lopushansky, I. I. Turok, V. O. Yukhymchuk, and D. R. T. Zahn, Journal of Crystal Growth, 312, 1709 (2010).
http://dx.doi.org/10.1016/j.jcrysgro.2010.02.033
37.
37. Chuan-bing Rong, D. Li, V. Nandwana, N. Poudyal, Y. Ding, Z. L. Wang, H. Zeng, and J. P. Liu, Adv. Mater. 18, 2984 (2006).
http://dx.doi.org/10.1002/adma.200601904
38.
38. R. D. Sanchez, J. Rivas, P. Vaqueiro, M. A. LKpez-Quintela, and D. Caeiro, J. Magn. Magn. Mater. 247, 92 (2002).
http://dx.doi.org/10.1016/S0304-8853(02)00170-1
39.
39. C. R. Vestal and Z. J. Zhang, Nano Lett. 3, 1739 (2003).
http://dx.doi.org/10.1021/nl034816k
40.
40. (a)F. Zhao, Hao-Ling Sun, G. Su, and S. Gao, small 2, 244 (2006);
http://dx.doi.org/10.1002/smll.200500294
40.(b)N. A. Frey, S. Peng, K. Cheng, and S. Sun, Chem. Soc. Rev. 38, 2532 (2009);
http://dx.doi.org/10.1039/b815548h
40.(c)S. J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, and T. Hyeon, J. Am. Chem. Soc. 122, 8581 (2000).
http://dx.doi.org/10.1021/ja001628c
41.
41. P. V. Radovanovic and D. R. Gamelin, Phys. Rev. Lett. 91, 157202 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.157202
42.
42. K. R. Kittilstved, N. S. Norberg, and D. R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.147209
43.
43. S. Banerjee, M. Mandal, N. Gayathri, and M. Sardar, Appl. Phys. Lett. 91, 182501 (2007).
http://dx.doi.org/10.1063/1.2804081
44.
44. Jose de la Venta, A. Pucci, E. FernándezPinel, M. A. García, C. de Julián Fernandez, P. Crespo, P. Mazzoldi, G. Ruggeri, and A. Hernando, Adv. Mater. 19, 875877 (2007).
http://dx.doi.org/10.1002/adma.200600984
45.
45. S. P. Gibin, Magnetic nanoparticals (Wiley–VCH, 2009).
46.
46. Yongjia Zhang, Hongwei Qin, Yayan Bao, and Jifan Hu, Physica B 406, 4661 (2011).
http://dx.doi.org/10.1016/j.physb.2011.09.055
47.
47. T. Arai and K. Matsuishi, J. Lumin. 70, 281 (1996).
http://dx.doi.org/10.1016/0022-2313(96)00061-0
48.
48. See Supplementary Material at http://dx.doi.org/10.1063/1.4794155 for room temperature PL spectra of Bi2S3 quantum dots in glass matrix treated at 873 K for 6 hr. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/2/10.1063/1.4794155
Loading
/content/aip/journal/adva/3/2/10.1063/1.4794155
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/2/10.1063/1.4794155
2013-02-28
2016-10-01

Abstract

The novel Bi2S3 quantum dots (QDs) glass nanosystems with unique magnetic properties have been investigated. The monodispersed QDs of size in the range of 3 to 15 nm were grown in the glass matrix. The optical study of these nanosystems clearly demonstrated the size quantization effect resulting in a pronounced band gap variation with QD size. The magnetic properties of the pristine glass and the Bi2S3 QD glass nanosystems were investigated by VSM and SQUID magnetometer. The pristine glass did not show any ferromagnetism while the Bi2S3 glass nanosystems showed significant and reproducible ferromagnetism. We also investigated the effect of the size of Bi2S3 QDs on the magnetic properties. The saturation magnetization for the 15 nm QD glass-nanosystem (124 memu/g) was observed to be higher as compared to the 3nm QD glass nanosystem (58.2 memu/g). The SQUID measurement gave the excellent hysteresis up to 300K. Surprisingly, the bulk Bi2S3 powder is diamagnetic in nature but Bi2S3 quantum dots glass nanosystem showed the ferromagnetic behavior for the first time. The investigated novel QD glass-nanosystem may have a potential application in spintronic devices and most importantly, this nanosystem can be fabricated in any usable shape as per the device requirement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/2/1.4794155.html;jsessionid=4bMgmU6ZxLTLrXaI510x7Bdm.x-aip-live-03?itemId=/content/aip/journal/adva/3/2/10.1063/1.4794155&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/2/10.1063/1.4794155&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/2/10.1063/1.4794155'
Right1,Right2,Right3,