Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/2/10.1063/1.4794160
1.
1. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, J. Bennett, Appl. Phys. Lett. 56, 2001 (1990).
http://dx.doi.org/10.1063/1.102999
2.
2. J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, H. Yokoyama, J. Appl. Phys. 84, 6891 (1998).
http://dx.doi.org/10.1063/1.368986
3.
3. E. S. Snow, D. Park, P. M. Campbell, Appl. Phys. Lett. 69, 269 (1996).
http://dx.doi.org/10.1063/1.117946
4.
4. L. A. Nagahara, T. Thundat, S. M. Lindsay, Appl. Phys. Lett. 57, 270 (1990).
http://dx.doi.org/10.1063/1.103711
5.
5. J. S. Hwang, Z. S. Hu, T. Y. Lu, L. W. Chen, S. W. Chen, T. Y. Lin, C. L. Hsiao, K. H. Chen, L. C. Chen, Nanotechnology 17, 3299 (2006).
http://dx.doi.org/10.1088/0957-4484/17/13/036
6.
6. J. S. Hwang, Z. Y. You, S. Y. Lin, Z. S. Hu, C. T. Wu, C. W. Chen, Appl. Phys. Lett. 86, 161901 (2005).
http://dx.doi.org/10.1063/1.1901804
7.
7. M. Rolandi, C. F. Quate, H. Dai, Adv. Mater. 14, 191 (2002).
http://dx.doi.org/10.1002/1521-4095(20020205)14:3<191::AID-ADMA191>3.0.CO;2-7
8.
8. C. Huh, S. J. Park, J. Vac. Sci. Technol. B 18, 55 (2000).
http://dx.doi.org/10.1116/1.591150
9.
9. D. Wang, L. Tsau, K. L. Wang, P. Chow, Appl. Phys. Lett. 67, 1295 (1995).
http://dx.doi.org/10.1063/1.114402
10.
10. H. Sugimura, T. Uchida, N. Kitamura, H. Masuhara, J. Phys. Chem. 98, 4352 (1994).
http://dx.doi.org/10.1021/j100067a023
11.
11. M. Tello, R. Garcia, J. A. Martín-Gago, N. F. Martínez, M. S. Martín-González, L. Aballe, A. Baranov, L. Gregoratti, Adv. Mater. 17, 1480 (2005).
http://dx.doi.org/10.1002/adma.200401466
12.
12. H. Kuramochi, F. Perez-Murano, J. Dagata, H. Yokoyama, Nanotechnology 15, 297 (2004).
http://dx.doi.org/10.1088/0957-4484/15/3/012
13.
13. T.-H. Fang, Microelectron. J. 35, 701 (2004).
http://dx.doi.org/10.1016/j.mejo.2004.06.022
14.
14. X. N. Xie, H. J. Chung, Z. J. Liu, S. W. Yang, C. H. Sow, A. T. S. Wee, Adv. Mater. 19, 2618 (2007).
http://dx.doi.org/10.1002/adma.200602837
15.
15. G. Mori, M. Lazzarino, D. Ercolani, G. Biasiol, L. Sorba, S. Heun, A. Locatelli, J. Appl. Phys. 98, 114303 (2005).
http://dx.doi.org/10.1063/1.2136212
16.
16. L. Zhang, Y. Mitani, Appl. Phys. Lett. 88, 032906 (2006).
http://dx.doi.org/10.1063/1.2166679
17.
17. R. Waser, M. Aono, Nature Materials 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
18.
18. M. J. Lee, C. B. Lee, D. lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. Chung, K. Kim, Nature Materials 10, 625 (2011).
http://dx.doi.org/10.1038/nmat3070
19.
19. S. J. Gamble, M. H. Burkhardt, A. Kashuba, R. Allenspach, S. S. Parkin, H. C. Siegmann, J. Stohr, Phys. Rev. Lett 102, 217201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.217201
20.
20. P. J. Brown, K. U. Neumann, P. J. Webster, K. R. A. Ziebeck, J. Phys.: Cond. Matt. 12, 1827 (2000).
http://dx.doi.org/10.1088/0953-8984/12/8/325
21.
21. P. J. Webster, J. Physics and Chemistry of Solids 32, 1221 (1971).
http://dx.doi.org/10.1016/S0022-3697(71)80180-4
22.
22. S. Ishida, T. Masaki, S. Fujii, S. Asano, Physica B: Condensed Matter 239, 163 (1997).
http://dx.doi.org/10.1016/S0921-4526(97)00401-8
23.
23. L. Ritchie, G. Xiao, Y. Ji, T. Y. Chen, C. L. Chien, M. Zhang, J. Chen, Z. Liu, G. Wu, X. X. Zhang, Phys. Rev. B 68, 104430 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.104430
24.
24. S. J. Hashemifar, P. Kratzer, M. Scheffler, Phys. Rev. Lett. 94, 096402 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.096402
25.
25. H. Pandey, P. C. Joshi, R. P. Pant, R. Prasad, S. Auluck, R. C. Budhani, J. Appl. Phys. 111, 023912 (2012).
http://dx.doi.org/10.1063/1.3677996
26.
26. See supplementary material http://dx.doi.org/10.1063/1.4794160 for structural and magnetic characterization. [Supplementary Material]
27.
27. P. Pörsch, M. Kallmayer, T. Eichhorn, G. Jakob, H. J. Elmers, C. A. Jenkins, C. Felser, R. Ramesh, M. Huth, Appl. Phys. Lett. 93, 022501 (2008).
http://dx.doi.org/10.1063/1.2957647
28.
28. C. A. Jenkins, R. Ramesh, M. Huth, T. Eichhorn, P. Pörsch, H. J. Elmers, and G. Jakob, Appl. Phys. Lett. 93, 234104 (2008).
http://dx.doi.org/10.1063/1.3044473
29.
29. I. D. Baikie, P. J. Estrup, Rev. Sci. Instrum. 69, 3902 (1998).
http://dx.doi.org/10.1063/1.1149197
30.
30. M. Porti, M. Nafria, M. C. Blum, X. Aymerich, S. Sadewasser, Appl. Phys. Lett. 81, 3615 (2002).
http://dx.doi.org/10.1063/1.1519357
31.
31. C. L. Sun, S. Y. Chen, S. B. Chen, A. Chin, Appl. Phys. Lett. 80, 1984 (2002).
http://dx.doi.org/10.1063/1.1459115
32.
32. J. J. Ahn, K. S. Moon, S. M. Koo, Nanoscale Res. Lett. 6, 550 (2011).
http://dx.doi.org/10.1186/1556-276X-6-550
33.
33. R. H. Fowler, L. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928).
http://dx.doi.org/10.1098/rspa.1928.0091
34.
34. K. E. Aidala, A. Hanbicki, Appl. Phys. Lett. 80, 1240 (2002).
http://dx.doi.org/10.1063/1.1449530
35.
35. I. Zutic, J. Fabian, S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
36.
36. J. S. Moodera, X. Hao, G. A. Gibson, R. Meservey, Phys. Rev. Lett. 61, 637 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.637
37.
37. J. Fabian, I. Zutic, S. D. Sarma, Phys. Rev. B 66, 165301 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165301
38.
38. Y. K. Kato, R. C. Myers, A. C. Gossard, D. D. Awschalom, Science 306, 1910 (2004).
http://dx.doi.org/10.1126/science.1105514
39.
39. V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, D. D. Awschalom, Nat. Phys. 1, 31 (2005).
http://dx.doi.org/10.1038/nphys009
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/2/10.1063/1.4794160
Loading
/content/aip/journal/adva/3/2/10.1063/1.4794160
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/2/10.1063/1.4794160
2013-02-28
2016-09-26

Abstract

Double ring formation on Co2MnSi (CMS) films is observed at electrical breakdown voltage during local anodic oxidation (LAO) using atomic force microscope (AFM). Corona effect and segregation of cobalt in the vicinity of the rings is studied using magnetic force microscopy and energy dispersive spectroscopy. Double ring formation is attributed to the interaction of ablated material with the induced magnetic field during LAO. Steepness of forward bias transport characteristics from the unperturbed region of the CMS film suggest a non equilibrium spin contribution. Such mesoscopic textures in magnetic films by AFM tip can be potentially used for memory storage applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/2/1.4794160.html;jsessionid=kd_6q3_fkv-jxYLyDPR3ES1q.x-aip-live-03?itemId=/content/aip/journal/adva/3/2/10.1063/1.4794160&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/2/10.1063/1.4794160&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/2/10.1063/1.4794160'
Right1,Right2,Right3,