Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, Nat. Photonics 3, 180 (2009).
2. E. F. Schubert and J. K. Kim, Science 308, 1274 (2005).
3. T. Hashimoto, F. Wu, J. S. Speck, and S. Nakamura, Nat. Mater. 6, 568 (2007).
4. G. Li, D. Geng, M. Shang, C. Peng, Z. Chenga, and J. Lin, J. Mater. Chem. 21, 13334 (2011).
5. W. R. Liu, C. H. Huang, C. P. Wu, Y. C. Chiu, Y. T. Yeh, and T. M. Chen, J. Mater. Chem. 21, 6869 (2011).
6. X. Liu, Y. Liu, D. Yan, H. Zhu, C. Liu, C. Xu, Y. Liu, and X. Wang, J. Mater. Chem. 22, 16839 (2012).
7. T. S. Chan, R. S. Liu, and I. Baginskiy, Chem. Mater. 20, 1215 (2008).
8. A. A. Reddy, S. Das, S. Ahmad, S. Babu, J. M. F. Ferreira, and G. Vijaya Prakash, RSC Advances 2, 8768 (2012).
9. Y. Q. Li, A C. A. Delsing, G. D. With, and H. T. Hintzen, Chem. Mater. 17, 3242 (2005).
10. M. S. Wang, S. P. Guo, Y. Li, L. Z. Cai, J. P. Zou, G. Xu, W. W. Zhou, F. K. Zheng, and G. C. Guo, J. Am. Chem. Soc. 131, 13572 (2009).
11. S. Das, A. A. Reddy, S. S. Babu, and G. Vijaya Prakash, J. Mater. Sci. 46, 7770 (2011).
12. J. Zhang, Z. Zhang, Z. Tang, Y. Tao, and X. Long, Chem. Mater. 14, 3005 (2002).
13. K. B. Kim, Y. I. Kim, H. G. Chun, T. Y. Cho, J. S. Jung, and J. G. Kang, Chem. Mater. 14, 5045 (2002).
14. S. Oshio, T. Matsuoka, S. Tanaka, and H. Kobayashi, J. Electrochem. Soc. 145, 3903 (1998).
15. Y. Shimomura, T. Kurushima, and N. Kijima, J. Electrochem. Soc. 154, J234 (2007).
16. Y. Shimomura, T. Honma, M. Shigeiwa, T. Akai, K. Okamoto, and N. Kijima, J. Electrochem. Soc. 154, J35 (2007).
17. A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, Chem. Mater. 18, 3314 (2006).
18. A. A. Setlur, W. J. Heward, M. E. Hannah, and U. Happek, Chem. Mater. 20, 6277 (2008).
19. W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, Bradley F. Chmelka, S. P. DenBaars, and R. Seshadri, Adv. Mater. 23, 2300 (2011).
20. M. S. Wang, S. P. Guo, Y. Li, L. Z. Cai, J. P. Zou, G. Xu, W. W. Zhou, F. K. Zheng, and G. C. Guo, J. Am. Chem. Soc. 131, 13572 (2009).
21. V. Bachmann, C. Ronda, O. Oeckler, and W. Schnick, Chem. Mater. 21, 316 (2009).
22. J. A. Kechele, C. Hecht, O. Oeckler, J. S. auf der Günne, P. J. Schmidt, and W. Schnick, Chem. Mater. 21, 1288 (2009).
23. Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, Chem. Mater. 17, 3242 (2005).
24. R. J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, Appl. Phys. Lett. 84, 5404 (2004).
25. T. Suehiro, N. Hirosaki, R. J. Xie, and M. Mitomo, Chem. Mater. 17, 308 (2005).
26. H. S. Yoo, W. B. Im, S. Vaidyanathan, B. J. Park, and D. Y. Jeon, J. Electrochem. Soc. 155, J66 (2008).
27. Y. S. Hu, W. D. Zhuang, H. Q. Ye, S. S. Zhang, Y. Fang, and X. W. Huang, J. Lumin. 111, 139 (2005).
28. Q. H. Zhang, J. Wang, R. J. Yu, M. Zhang, and Q. Su, Electrochem. Solid State Lett. 11, H335H (2008).
29. J. Liu, H. Z. Lian, C. S. Shi, and J. Y. Sun, J. Electrochem. Soc. 152, G880 (2005).
30. T. R. N. Kutty, Mater. Res. Bull. 25, 343 (1990).
31. L. Wang and Y. Wang, Mater. Sci. Eng., B 139, 232 (2007).
32. Y. Zhang and Y. Li, J. Alloys Compd. 384, 88 (2004).
33. H. Liang, H. Lin, G. Zhang, P. Dorenbos, and Q. Su, J. Lumin. 131, 194 (2011).
34. X. Zhang, X. Qiao, and H. J. Seo, Curr. Appl. Phys. 11, 442 (2011).
35. C. Guo, H. Jing, and T. Li, RSC Advances 2, 2119 (2012).
36. L. Wu, X. L. Chen, Y. P. Xu, and Y. P. Sun, Inorg. Chem. 45, 3042 (2006).
37. Y. R. Shi, Y. H. Wang, and Z. G. Yang, J. Alloys Compd. 509, 3128 (2011).
38. Q. Su, Z. W. Pei, L. S. Chi, H. J. Zhang, Z. Y. Zhang, and F. Zou, J. Alloys Compd. 192 (1993).
39. J. Trebosc, J. P. Amoureux, and Z. Gan, Solid State Nucl. Magn. Reson. 31, 1 (2007).
40. D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J. O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, Magn. Reson. Chem. 40, 70 (2002).
41. O. A. Lopez, J. Mckittrick, and L. E. Shea, J. Lumin. 71, 1 (1997).
42. G. Blasse, J. SolidState Chem. 62, 207 (1986).
43. W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4424 (1968).
44. CIE Colorimetry Technical Report, CIE Central Bureau, Vienna, 3rd edn, 2004, vol. 15.
45. N. Hirosaki, R. J. Xie, and K. Kimoto, Appl. Phys. Lett. 86, 211905 (2005).
46. C. Chartier, C. Barthou, P. Benalloul, S. Chenot, and J. Frigerio, J. Cryst. Growth 256, 305 (2003).
47. L. Li, Z. Zhou, H. Tian, D. Gong, Z. Yang, and Y. Yang, J. Appl. Phys. 108, 043520 (2010).
48. N. Yaiphaba, R. S. Ningthoujam, N. Shanta Singh, R. K. Vatsa, N. Rajmuhon Singh, Sangita Dhara, N. L. Misra, and R. Tewari, J. Appl. Phys. 107, 034301 (2010).

Data & Media loading...


Article metrics loading...



A series of doped KCa4(BO3)3:Ln3+ (Ln: Dy, Eu and Tb) compositions were synthesized by solid–state reaction method and their photoluminescent properties were systematically investigated to ascertain their suitability for application in white light emitting diodes. The X–ray diffraction (XRD) and nuclear magnetic resonance (MAS–NMR) data indicates that Ln3+–ions are successfully occupied the non–centrosymmetric Ca2+ sites, in the orthorhombic crystalline phase of KCa4(BO3)3 having space group Ama2, without affecting the boron chemical environment. The present phosphor systems could be efficiently excitable at the broad UV wavelength region, from 250 to 350 nm, compatible to the most commonly available UV light–emitting diode (LED) chips. Photoluminescence studies revealed optimal near white–light emission for KCa4(BO3)3 with 5 wt.% Dy3+ doping, while warm white–light (CIE; X = 0.353, Y = 0.369) is obtained at 1wt.% Dy3+ ion concentration. The principle of energy transfer between Eu3+ and Tb3+ also demonstrates the potential white–light from KCa4(BO3)3:Eu3+,Tb3+ phosphor. Whereas, single Tb3+ and Eu3+–doped systems showed bright green (Tb3+) and red (Eu3+) emissions, respectively. Having structural flexibility along with remarkable chemical/thermal stability and suitable quantum efficiency these phosphors can be promising candidates as white–light–emitter for near UV LEDs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd