Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K. Yoo, and K. Kim, “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures,” Nat. Mater. 10, 625630 (2011).
2. K. Szot, R. Dittmann, W. Speier, and R. Waser, “Nanoscale resistive switching in SrTiO3 thin films,” phys. status solidi (RRL) – Rapid Research Letters 1, R86R88 (2007).
3. R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories - Nanoionic Mechanisms,” Prospects, and Challenges, Adv. Mater. 21, 2632 (2009).
4. T. Menke, P. Meuffels, R. Dittmann, K. Szot, and R. Waser, “Separation of bulk and interface contributions to electroforming and resistive switching behavior of epitaxial Fe-doped SrTiO3,” J. Appl. Phys. 105, 066104066103 (2009).
5. D. B. Strukov and R. S. Williams, “Exponential ionic drift: Fast switching and low volatility of thin-film memristors,” Appl. Phys. A-Mater. 94, 515519 (2009).
6. G. Hwan Kim, J. Ho Lee, J. Yeong Seok, S. Ji Song, J. Ho Yoon, K. Jean Yoon, M. Hwan Lee, K. Min Kim, H. Dong Lee, S. Wook Ryu, T. Joo Park, and C. Seong Hwang, “Improved endurance of resistive switching TiO2 thin film by hourglass shaped Magneéli filaments,” Appl. Phys. Lett. 98, 262901 (2011).
7. J. Lee, E. M. Bourim, W. Lee, J. Park, M. Jo, S. Jung, J. Shin, and H. Hwang, “Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications,” Appl. Phys. Lett. 97, 172105 (2010).
8. Y. H. Do, J. S. Kwak, J. P. Hong, K. Jung, and H. Im, “Al electrode dependent transition to bipolar resistive switching characteristics in pure TiO2 films,” J. Appl. Phys. 104, 114512 (2008).
9. X. J. Liu, X. M. Li, Q. Wang, W. D. Yu, R. Yang, X. Cao, X. D. Gao, and L. D. Chen, “Improved resistive switching properties in Ti/TiOx/La0.7Ca0.3MnO3/Pt stacked structures,” Solid State Commun. 150, 137141 (2010).
10. H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” in Electron Devices Meeting, 2008. IEDM 2008 (IEEE International, 2008), pp. 14.
11. A. Prakash, S. Maikap, C. S. Lai, T. C. Tien, W. S. Chen, H. Y. Lee, F. T. Chen, M. J. Kao, and M. J. Tsai, “Bipolar resistive switching memory using bilayer TaOx/WOx films,” Solid-State Electron. 77, 3540 (2012).
12. S. M. Sadaf, X. Liu, M. Son, S. Park, S. H. Choudhury, E. Cha, M. Siddik, J. Shin, and H. Hwang, “Highly uniform and reliable resistance switching properties in bilayer WOx/NbOx RRAM devices,” phys. status solidi (a) 209, 11791183 (2012).
13. L. Meng Han et al., “High-speed and localized resistive switching characteristics of double-layer SrZrO3 memory devices,” J. Phys. D: Appl. Phys. 43, 295404 (2010).
14. S. Y. Wang, D. Y. Lee, T. Y. Tseng, and C. Y. Lin, “Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films,” Appl. Phys. Lett. 95, 112904 (2009).
15. P. C. Jiang, Y. S. Lai, and J. S. Chen, “Dependence of crystal structure and work function of WNx films on the nitrogen content,” Appl. Phys. Lett. 89, 122107122103 (2006).
16. M. L. Addonizio, A. Castaldo, A. Antonaia, E. Gambale, and L. Iemmo, “Influence of process parameters on properties of reactively sputtered tungsten nitride thin films,” J. Vac. Sci. and Technol. A: Vacuum, Surfaces, and Films 30, 031506031508 (2012).
17. H. Y. Yu, H. F. Lim, J. H. Chen, M. F. Li, Z. Chunxiang, C. H. Tung, A. Y. Du, W. D. Wang, D. Z. Chi, and D. L. Kwong, “Physical and electrical characteristics of HfN gate electrode for advanced MOS devices,” Electron Device Lett., IEEE 24, 230232 (2003).
18. B.-Y. Tsui, C.-F. Huang, and C.-H. Lu, “Investigation of Molybdenum Nitride Gate on SiO2 and HfO2 for MOSFET Application,” J. Electrochem. Soc. 153, 197202 (2006).
19. B. R. Zhao, L. Chen, H. L. Luo, M. D. Jack, and D. P. Mullin, “Superconducting and normal-state properties of vanadium nitride,” Phys. Rev. B 29, 61986202 (1984).
20. A. Glaser, S. Surnev, F. P. Netzer, N. Fateh, G. A. Fontalvo, and C. Mitterer, “Oxidation of vanadium nitride and titanium nitride coatings,” Surf. Sci. 601, 11531159 (2007).
21. J. Westlinder, J. Malmstrom, G. Sjoblom, and J. Olsson, “Low-resistivity ZrNx metal gate in MOS devices,” Solid State Electron 49, 14101413 (2005).
22. R. Arvinte, J. Borges, R. E. Sousa, D. Munteanu, N. P. Barradas, E. Alves, F. Vaz, and L. Marques, “Preparation and characterization of CrNxOy thin films: The effect of composition and structural features on the electrical behavior,” Appl. Phys. Lett. 257, 91209124 (2011).
23. P. Zhou, M. Yin, H. J. Wan, H. B. Lu, T. A. Tang, and Y. Y. Lin, “Role of TaON interface for CuxO resistive switching memory based on a combined model,” Appl. Phys. Lett. 94, 053510 (2009).
24. J. S. Kwak, Y. H. Do, Y. C. Bae, H. S. Im, J. H. Yoo, M. G. Sung, Y. T. Hwang, and J. P. Hong, “Roles of interfacial TiOxN1-x layer and TiN electrode on bipolar resistive switching in TiN/TiO2/TiN frameworks,” Appl. Phys. Lett. 96, (2010).
25. N. Farkas, J. C. Tokash, G. Zhang, E. A. Evans, R. D. Ramsier, and J. A. Dagata, “Local oxidation of metal and metal nitride films,” J. of Vac. Sci. and Technol. A: Vacuum, Surfaces, and Films 22, 18791884 (2004).
26. I. Milošev, H. H. Strehblow, and B. Navinšek, “Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation,” Thin Solid Films 303, 246254 (1997).
27. I. Suni, D. Sigurd, K. T. Ho, and M. A. Nicolet, “Thermal Oxidation of Reactively Sputtered Titanium Nitride and Hafnium Nitride Films,” J. Electrochem. Soc. 130, 12101214 (1983).
28. S. H. Mohamed and A. Anders, “Structural, optical, and electrical properties of WOxNy films deposited by reactive dual magnetron sputtering,” Surf. Coat. Technol. 201, 29772983 (2006).
29. Y. HongYu, L. Ming Fu, and K. Dim Lee, “Thermally robust HfN metal as a promising gate electrode for advanced MOS device applications, Electron Devices,” IEEE Transactions on 51, 609615 (2004).
30. T. Sano and S.-i. Ohmi, “In situ Formation of HfN/HfSiON Gate Stacks with 0.5 nm Equivalent Oxide Thickness Utilizing Electron Cyclotron Resonance Plasma Sputtering on Three-Dimensional Si Structures,” Jpn. J. Appl. Phys. 50, 04DA09 (2011).
31. L. Chang Bum, L. Dong Soo, A. Benayad, L. Seung Ryul, C. Man, L. Myoung-Jae, H. Jihyun, K. Chang Jung, and U. I. Chung, “Highly Uniform Switching of Tantalum Embedded Amorphous Oxide Using Self-Compliance Bipolar Resistive Switching,” Electron Device Lett., IEEE 32, 399401 (2011).
32. N. Xu et al., “Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention,” Semicond. Sci. and Technol. 23, 075019 (2008).
33. T. M. Pan and C. H. Lu, “Forming-free resistive switching behavior in Nd2O3, Dy2O3, and Er2O3 films fabricated in full room temperature,” Appl. Phys. Lett. 99, 113509113503 (2011).
34. K. Szot, W. Speier, G. Bihlmayer, and R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3,” Nat. Mater. 5, 312320 (2006).
35. Y. Ahn, S. Wook Ryu, J. Ho Lee, J. Woon Park, G. Hwan Kim, Y. Seok Kim, J. Heo, C. Seong Hwang, and H. Joon Kim, “Unipolar resistive switching characteristics of pnictogen oxide films: Case study of Sb2O5,” J.Appl. Phys. 112, 104105 (2012).
36. C. C. Cheng, C. H. Chien, C. W. Chen, S. L. Hsu, C. H. Yang, and C. Y. Chang, “Effects of Postdeposition Annealing on the Characteristics of HfOxNy Dielectrics on Germanium and Silicon Substrates,” J. Electrochem. Soc. 153, F160 (2006).
37. W. Shen, R. Dittmann, U. Breuer, and R. Waser, “Improved endurance behavior of resistive switching in (Ba,Sr)TiO3 thin films with W top electrode,” Appl. Phys. Lett. 93, 222102 (2008).
38. C. G. Jin, T. Yu, Y. Bo, Y. Zhao, H. Y. Zhang, Y. J. Dong, X. M. Wu, L. J. Zhuge, and S. B. Ge, “Characterization of Hafnium-Zirconium-Oxide-Nitride films grown by ion beam assisted deposition,” Vacuum 86, 10781082 (2012).
39. R. Yang, X. M. Li, W. D. Yu, X. D. Gao, D. S. Shang, L. D. Chen, “Endurance improvement of resistance switching behaviors in the La0.7Ca0.3MnO3 film based devices with Ag–Al alloy top electrodes,” J. Appl. Phys. 107, 063703063705 (2010).
40. R. Yang, X. M. Li, W. D. Yu, X. J. Liu, X. D. Gao, Q. Wang, and L. D. Chen, “Resistance-switching properties of La0.67Ca0.33MnO3 thin films with Ag–Al alloy top electrodes,” Appl. Phys. A 97, 8590 (2009).

Data & Media loading...


Article metrics loading...



The refractory transition metal nitride (TMN) film Hafnium nitride (HfNx) was successfully prepared on silicon-based substrates as bottom electrodes for resistive random access memory (RRAM) cells in Pt (top)/metal oxide/ HfNx (bottom) sandwich structure. The reproducible resistive switching (RS) characteristics of the memory cells were studied systematically for RRAM applications. The advantages of adopting HfNx instead of Pt as bottom electrode material were demonstrated, including the improvement of the low resistive state value, the RS endurance and the uniformity of RS parameters. The composition and chemical bonding states of the prepared HfNx was analyzed by X-ray photoelectron spectroscopy (XPS) technique. The nitrogen content in the HfNx and the Gibbs free energy of the corresponding metal oxide formation has great influences on the RS properties. The oxygen reservoir ability and diffusion barrier effect of the HfNx play a key role in the RS performance improvement of the RRAM devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd