1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Resistive switching characteristics of Pt/TaOx/HfNx structure and its performance improvement
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/3/10.1063/1.4794687
1.
1. M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K. Yoo, and K. Kim, “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures,” Nat. Mater. 10, 625630 (2011).
http://dx.doi.org/10.1038/nmat3070
2.
2. K. Szot, R. Dittmann, W. Speier, and R. Waser, “Nanoscale resistive switching in SrTiO3 thin films,” phys. status solidi (RRL) – Rapid Research Letters 1, R86R88 (2007).
http://dx.doi.org/10.1002/pssr.200701003
3.
3. R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories - Nanoionic Mechanisms,” Prospects, and Challenges, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
4.
4. T. Menke, P. Meuffels, R. Dittmann, K. Szot, and R. Waser, “Separation of bulk and interface contributions to electroforming and resistive switching behavior of epitaxial Fe-doped SrTiO3,” J. Appl. Phys. 105, 066104066103 (2009).
http://dx.doi.org/10.1063/1.3100209
5.
5. D. B. Strukov and R. S. Williams, “Exponential ionic drift: Fast switching and low volatility of thin-film memristors,” Appl. Phys. A-Mater. 94, 515519 (2009).
http://dx.doi.org/10.1007/s00339-008-4975-3
6.
6. G. Hwan Kim, J. Ho Lee, J. Yeong Seok, S. Ji Song, J. Ho Yoon, K. Jean Yoon, M. Hwan Lee, K. Min Kim, H. Dong Lee, S. Wook Ryu, T. Joo Park, and C. Seong Hwang, “Improved endurance of resistive switching TiO2 thin film by hourglass shaped Magneéli filaments,” Appl. Phys. Lett. 98, 262901 (2011).
http://dx.doi.org/10.1063/1.3600784
7.
7. J. Lee, E. M. Bourim, W. Lee, J. Park, M. Jo, S. Jung, J. Shin, and H. Hwang, “Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications,” Appl. Phys. Lett. 97, 172105 (2010).
http://dx.doi.org/10.1063/1.3491803
8.
8. Y. H. Do, J. S. Kwak, J. P. Hong, K. Jung, and H. Im, “Al electrode dependent transition to bipolar resistive switching characteristics in pure TiO2 films,” J. Appl. Phys. 104, 114512 (2008).
http://dx.doi.org/10.1063/1.3032896
9.
9. X. J. Liu, X. M. Li, Q. Wang, W. D. Yu, R. Yang, X. Cao, X. D. Gao, and L. D. Chen, “Improved resistive switching properties in Ti/TiOx/La0.7Ca0.3MnO3/Pt stacked structures,” Solid State Commun. 150, 137141 (2010).
http://dx.doi.org/10.1016/j.ssc.2009.09.032
10.
10. H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” in Electron Devices Meeting, 2008. IEDM 2008 (IEEE International, 2008), pp. 14.
11.
11. A. Prakash, S. Maikap, C. S. Lai, T. C. Tien, W. S. Chen, H. Y. Lee, F. T. Chen, M. J. Kao, and M. J. Tsai, “Bipolar resistive switching memory using bilayer TaOx/WOx films,” Solid-State Electron. 77, 3540 (2012).
http://dx.doi.org/10.1016/j.sse.2012.05.028
12.
12. S. M. Sadaf, X. Liu, M. Son, S. Park, S. H. Choudhury, E. Cha, M. Siddik, J. Shin, and H. Hwang, “Highly uniform and reliable resistance switching properties in bilayer WOx/NbOx RRAM devices,” phys. status solidi (a) 209, 11791183 (2012).
http://dx.doi.org/10.1002/pssa.201127659
13.
13. L. Meng Han et al., “High-speed and localized resistive switching characteristics of double-layer SrZrO3 memory devices,” J. Phys. D: Appl. Phys. 43, 295404 (2010).
http://dx.doi.org/10.1088/0022-3727/43/29/295404
14.
14. S. Y. Wang, D. Y. Lee, T. Y. Tseng, and C. Y. Lin, “Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films,” Appl. Phys. Lett. 95, 112904 (2009).
http://dx.doi.org/10.1063/1.3231872
15.
15. P. C. Jiang, Y. S. Lai, and J. S. Chen, “Dependence of crystal structure and work function of WNx films on the nitrogen content,” Appl. Phys. Lett. 89, 122107122103 (2006).
http://dx.doi.org/10.1063/1.2349313
16.
16. M. L. Addonizio, A. Castaldo, A. Antonaia, E. Gambale, and L. Iemmo, “Influence of process parameters on properties of reactively sputtered tungsten nitride thin films,” J. Vac. Sci. and Technol. A: Vacuum, Surfaces, and Films 30, 031506031508 (2012).
http://dx.doi.org/10.1116/1.3698399
17.
17. H. Y. Yu, H. F. Lim, J. H. Chen, M. F. Li, Z. Chunxiang, C. H. Tung, A. Y. Du, W. D. Wang, D. Z. Chi, and D. L. Kwong, “Physical and electrical characteristics of HfN gate electrode for advanced MOS devices,” Electron Device Lett., IEEE 24, 230232 (2003).
http://dx.doi.org/10.1109/LED.2003.812143
18.
18. B.-Y. Tsui, C.-F. Huang, and C.-H. Lu, “Investigation of Molybdenum Nitride Gate on SiO2 and HfO2 for MOSFET Application,” J. Electrochem. Soc. 153, 197202 (2006).
http://dx.doi.org/10.1149/1.2158576
19.
19. B. R. Zhao, L. Chen, H. L. Luo, M. D. Jack, and D. P. Mullin, “Superconducting and normal-state properties of vanadium nitride,” Phys. Rev. B 29, 61986202 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.6198
20.
20. A. Glaser, S. Surnev, F. P. Netzer, N. Fateh, G. A. Fontalvo, and C. Mitterer, “Oxidation of vanadium nitride and titanium nitride coatings,” Surf. Sci. 601, 11531159 (2007).
http://dx.doi.org/10.1016/j.susc.2006.12.010
21.
21. J. Westlinder, J. Malmstrom, G. Sjoblom, and J. Olsson, “Low-resistivity ZrNx metal gate in MOS devices,” Solid State Electron 49, 14101413 (2005).
http://dx.doi.org/10.1016/j.sse.2005.06.021
22.
22. R. Arvinte, J. Borges, R. E. Sousa, D. Munteanu, N. P. Barradas, E. Alves, F. Vaz, and L. Marques, “Preparation and characterization of CrNxOy thin films: The effect of composition and structural features on the electrical behavior,” Appl. Phys. Lett. 257, 91209124 (2011).
23.
23. P. Zhou, M. Yin, H. J. Wan, H. B. Lu, T. A. Tang, and Y. Y. Lin, “Role of TaON interface for CuxO resistive switching memory based on a combined model,” Appl. Phys. Lett. 94, 053510 (2009).
http://dx.doi.org/10.1063/1.3078824
24.
24. J. S. Kwak, Y. H. Do, Y. C. Bae, H. S. Im, J. H. Yoo, M. G. Sung, Y. T. Hwang, and J. P. Hong, “Roles of interfacial TiOxN1-x layer and TiN electrode on bipolar resistive switching in TiN/TiO2/TiN frameworks,” Appl. Phys. Lett. 96, (2010).
25.
25. N. Farkas, J. C. Tokash, G. Zhang, E. A. Evans, R. D. Ramsier, and J. A. Dagata, “Local oxidation of metal and metal nitride films,” J. of Vac. Sci. and Technol. A: Vacuum, Surfaces, and Films 22, 18791884 (2004).
http://dx.doi.org/10.1116/1.1723269
26.
26. I. Milošev, H. H. Strehblow, and B. Navinšek, “Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation,” Thin Solid Films 303, 246254 (1997).
http://dx.doi.org/10.1016/S0040-6090(97)00069-2
27.
27. I. Suni, D. Sigurd, K. T. Ho, and M. A. Nicolet, “Thermal Oxidation of Reactively Sputtered Titanium Nitride and Hafnium Nitride Films,” J. Electrochem. Soc. 130, 12101214 (1983).
http://dx.doi.org/10.1149/1.2119919
28.
28. S. H. Mohamed and A. Anders, “Structural, optical, and electrical properties of WOxNy films deposited by reactive dual magnetron sputtering,” Surf. Coat. Technol. 201, 29772983 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2006.06.008
29.
29. Y. HongYu, L. Ming Fu, and K. Dim Lee, “Thermally robust HfN metal as a promising gate electrode for advanced MOS device applications, Electron Devices,” IEEE Transactions on 51, 609615 (2004).
http://dx.doi.org/10.1109/TED.2004.825110
30.
30. T. Sano and S.-i. Ohmi, “In situ Formation of HfN/HfSiON Gate Stacks with 0.5 nm Equivalent Oxide Thickness Utilizing Electron Cyclotron Resonance Plasma Sputtering on Three-Dimensional Si Structures,” Jpn. J. Appl. Phys. 50, 04DA09 (2011).
http://dx.doi.org/10.1143/JJAP.50.04DA09
31.
31. L. Chang Bum, L. Dong Soo, A. Benayad, L. Seung Ryul, C. Man, L. Myoung-Jae, H. Jihyun, K. Chang Jung, and U. I. Chung, “Highly Uniform Switching of Tantalum Embedded Amorphous Oxide Using Self-Compliance Bipolar Resistive Switching,” Electron Device Lett., IEEE 32, 399401 (2011).
http://dx.doi.org/10.1109/LED.2010.2101044
32.
32. N. Xu et al., “Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention,” Semicond. Sci. and Technol. 23, 075019 (2008).
http://dx.doi.org/10.1088/0268-1242/23/7/075019
33.
33. T. M. Pan and C. H. Lu, “Forming-free resistive switching behavior in Nd2O3, Dy2O3, and Er2O3 films fabricated in full room temperature,” Appl. Phys. Lett. 99, 113509113503 (2011).
http://dx.doi.org/10.1063/1.3638490
34.
34. K. Szot, W. Speier, G. Bihlmayer, and R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3,” Nat. Mater. 5, 312320 (2006).
http://dx.doi.org/10.1038/nmat1614
35.
35. Y. Ahn, S. Wook Ryu, J. Ho Lee, J. Woon Park, G. Hwan Kim, Y. Seok Kim, J. Heo, C. Seong Hwang, and H. Joon Kim, “Unipolar resistive switching characteristics of pnictogen oxide films: Case study of Sb2O5,” J.Appl. Phys. 112, 104105 (2012).
http://dx.doi.org/10.1063/1.4766415
36.
36. C. C. Cheng, C. H. Chien, C. W. Chen, S. L. Hsu, C. H. Yang, and C. Y. Chang, “Effects of Postdeposition Annealing on the Characteristics of HfOxNy Dielectrics on Germanium and Silicon Substrates,” J. Electrochem. Soc. 153, F160 (2006).
http://dx.doi.org/10.1149/1.2203097
37.
37. W. Shen, R. Dittmann, U. Breuer, and R. Waser, “Improved endurance behavior of resistive switching in (Ba,Sr)TiO3 thin films with W top electrode,” Appl. Phys. Lett. 93, 222102 (2008).
http://dx.doi.org/10.1063/1.3039809
38.
38. C. G. Jin, T. Yu, Y. Bo, Y. Zhao, H. Y. Zhang, Y. J. Dong, X. M. Wu, L. J. Zhuge, and S. B. Ge, “Characterization of Hafnium-Zirconium-Oxide-Nitride films grown by ion beam assisted deposition,” Vacuum 86, 10781082 (2012).
http://dx.doi.org/10.1016/j.vacuum.2011.10.001
39.
39. R. Yang, X. M. Li, W. D. Yu, X. D. Gao, D. S. Shang, L. D. Chen, “Endurance improvement of resistance switching behaviors in the La0.7Ca0.3MnO3 film based devices with Ag–Al alloy top electrodes,” J. Appl. Phys. 107, 063703063705 (2010).
http://dx.doi.org/10.1063/1.3309473
40.
40. R. Yang, X. M. Li, W. D. Yu, X. J. Liu, X. D. Gao, Q. Wang, and L. D. Chen, “Resistance-switching properties of La0.67Ca0.33MnO3 thin films with Ag–Al alloy top electrodes,” Appl. Phys. A 97, 8590 (2009).
http://dx.doi.org/10.1007/s00339-009-5333-9
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4794687
Loading
/content/aip/journal/adva/3/3/10.1063/1.4794687
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4794687
2013-03-01
2014-07-31

Abstract

The refractory transition metal nitride (TMN) film Hafnium nitride (HfNx) was successfully prepared on silicon-based substrates as bottom electrodes for resistive random access memory (RRAM) cells in Pt (top)/metal oxide/ HfNx (bottom) sandwich structure. The reproducible resistive switching (RS) characteristics of the memory cells were studied systematically for RRAM applications. The advantages of adopting HfNx instead of Pt as bottom electrode material were demonstrated, including the improvement of the low resistive state value, the RS endurance and the uniformity of RS parameters. The composition and chemical bonding states of the prepared HfNx was analyzed by X-ray photoelectron spectroscopy (XPS) technique. The nitrogen content in the HfNx and the Gibbs free energy of the corresponding metal oxide formation has great influences on the RS properties. The oxygen reservoir ability and diffusion barrier effect of the HfNx play a key role in the RS performance improvement of the RRAM devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4794687.html;jsessionid=34kkv3leelg5f.x-aip-live-02?itemId=/content/aip/journal/adva/3/3/10.1063/1.4794687&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Resistive switching characteristics of Pt/TaOx/HfNx structure and its performance improvement
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4794687
10.1063/1.4794687
SEARCH_EXPAND_ITEM