banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Thermoelectric properties of chalcogenide based Cu2+xZnSn1−xSe4
Rent this article for
Access full text Article
1. Matsushita, H. , Takashi, M. , Akinori, K. , and Takeo, T , J. Cryst. Growth. 208, 416422 (2000).
2. Nolas, G. S. , Lin, X. , Martin, J. , Beekman, M. , and Wang, H , J. Electron. Mater. 38(7), 10521055 (2009).
3. Slack G. A , CRC Handbook of Thermoelectrics, edited by Rowe D. M. (CRC, Boca Raton, 1995), p. 407.
4. Liu, M.-L. , Huang, F.-Q. , Chen, L.-D. , and Chen, I-W , Appl. Phys. Lett. 94, 202103 (2009).
5. Liu, M.-L. , Chen, I-W. , Huang, F.-Q. , and Chen, L.-D , Adv. Mater. 21, 38083812 (2009).
6. C. H. L. GOODMAN, J. Phys. Chem. Solids Pergamon Press 6, 305314 (1958).
7. Shi, X. Y. , Huang, F. Q. , Liu, M. L. , and Chen, L. D , Appl. Phys. Lett. 94, 122103 (2009).
8. Zeier, W. G , Lalonde, A. , Gibbs, Z. M. , Heinrich, C. P. , Panthöfer, M. , Snyder, G. J. , and Tremel, W. , J. Am. Chem. Soc, 134, 71477154 (2012).
9. Fan, F.-J. , Yu, B. , Wang, Y. , Zhu, Y.-L. , Liu, X.-J. , Yu, S.-H. , and Ren Z , J. Am. Chem. Soc. 133(40) 1591015913 (2011).
10. Ibanez, M. , Cadavid, D. , Zamani, R. , Garcia-Castello, N. , Izquierdo-Roca, V. , Li, W. , Fairbrother, A. , Prades, J. D. , Shavel, A. , Arbiol, J. , Perez-Rodriguez, A. , Morante, J. R. , and Cabot A , Chem. Mater. 24, 562570 (2012).
11. M. Ibanez, R. Zamani, A. LaLonde, D. Cadavid, W. H. Li, A. Shavel, J. Arbiol, J. R. Morante, S. Gorsse, G. J. Snyder, and A. Cabot, J. Am.Chem. Soc. 134, 4060 (2012).
12. Fan, F.-J. , Wang, Y.-X. , Liu, X.-J. , Wu, L. , and Yu, S.-H , Adv. Mater. 24, 61586163 (2012).
13. Roisnel, T. , Rodriguez-Carvajal, J. Mater. Sci. Forum. 118, 378381 (2001).
14. Goryunova, N. A. , Kotovich, V. A. , and Frank Kamenetskii, V. A , Doklady Akademii Nauk SSSR 103, 659662 (1955).
15. M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, Phys. Stat. Sol. a 205(1), 167170 (2008).
16. Yamamoto, K. and Kashida, S , J.Solid St.Chem 93, 202211 (1991).
17. O. Madelung, in Semiconductors: Data Handbook, 3rd Ed. (Springer, Berlin Heidelberg New York, 2004).
18. B. K. Reddy, M. M. Reddy, R. Venugopal, and D. R. Reddy, Radiation Effects and Defects in Solids 145, 133142 (1998).
19. S. Asanabe, J. Phys. Soc. Japan 14, 281 (1959).
20. Z. Ogorelic and D. Selinger, J.Mater.Sci 6, 136139 (1971).
21. F. J. Blatt, Physics of electronic conduction in solids, p. 210 (McGraw-Hill, New York, 1968).
22. G. Rogl, D. Setman, E. Schafler, J. Horky, M. Kerber, M. Zehetbauer, M. Falmbigl, P. Rogl, E. Royanian, and E. Bauer, Acta Materialia, 60(5), 21462157 (2012).


Image of FIG. 1.

Click to view

FIG. 1.

(a) Raman spectra of Cu2+xZnSn1−xSe4 with 0 ≤ x ≤ 0.125, (b) Raman spectrum with Lorentzian fitting Cu2ZnSnSe4.

Image of FIG. 2.

Click to view

FIG. 2.

Lattice parameters a and c as a function of the nominal Cu-content for Cu2+xZnSn1−xSe4 (0 ≤ x ≤ 0.15).

Image of FIG. 3.

Click to view

FIG. 3.

(a, b) Back scattered electron micrographs of Cu2ZnSnSe4 and Cu2.1ZnSn0.9Se4. The dark regions correspond to the secondary ZnSe-phase.

Image of FIG. 4.

Click to view

FIG. 4.

High temperature x-ray powder patterns for sample Cu2.05ZnSn0.95Se4.

Image of FIG. 5.

Click to view

FIG. 5.

Electrical resistivity as a function of temperature for Cu2+xZnSn1−xSe4 (0 ≤ x ≤ 0.15).

Image of FIG. 6.

Click to view

FIG. 6.

Seebeck-coefficients of all samples Cu2+xZnSn1− xSe4 (0 ≤ x ≤ 0.15) as a function of temperature.

Image of FIG. 7.

Click to view

FIG. 7.

Thermal conductivity as a function of temperature for Cu2+xZnSn1−xSe4 (0 ≤ x ≤ 0.15). The total thermal conductivity is displayed with filled symbols and the phonon contribution with open symbols.

Image of FIG. 8.

Click to view

FIG. 8.

Thermoelectric figure of merit, zT, as a function of temperature for Cu2+xZnSn1−xSe4 (0 ≤ x ≤ 0.15).

Image of FIG. 9.

Click to view

FIG. 9.

Comparison of the electrical resistivity (full symbols) and the Seebeck-coefficient (open symbols) as a function of temperature for Cu2ZnSnSe4 before and after HPT.

Image of FIG. 10.

Click to view

FIG. 10.

Comparison of the electrical resistivity (full symbols) and the Seebeck- coefficient (Open symbols) as a function of temperature for Cu2.05ZnSn0.95Se4 before and after HPT.

Image of FIG. 11.

Click to view

FIG. 11.

Power factor of Cu2ZnSnSe4 and Cu2.05ZnSn0.95Se4 as a function of temperature before (BM + HP, full symbols) and after HPT-treatment (open \symbols).

Image of FIG. 12.

Click to view

FIG. 12.

Temperature dependent thermal conductivity of the two samples Cu2ZnSn1Se4 and Cu2.05ZnSn0.95Se4 before and after HPT.

Image of FIG. 13.

Click to view

FIG. 13.

Thermoelectric figure of merit, zT, of the two samples Cu2ZnSnSe4 and Cu2.05ZnSn0.95Se4 before and after HPT as a function of temperature.


Generic image for table

Click to view

Table I.

Nominal composition, hot pressing conditions, relative densities, WDS phase composition and secondary phase for Cu2+xZnSn1−xSe4 (0 ≤ x ≤ 0.125), hot pressed at 773 K, 56 MPa.

Generic image for table

Click to view

Table II.

Nominal composition, presence of stannite phase Raman modes including secondary phase modes such as ZnSe and CuSe for Cu2+xZnSn1−xSe4 (0 ≤ x≤ 0.125).

Generic image for table

Click to view

Table III.

Nominal composition, temperature, and lattice parameters for Cu2+xZnSn1−xSe4 (0 ≤ x ≤ 0.125).


Article metrics loading...



Quaternary chalcogenide compounds Cu 2+xZnSn1−xSe4 (0 ≤ x ≤ 0.15) were prepared by solid state synthesis. Rietveld powder X-ray diffraction (XRD) refinements combined with Electron Probe Micro Analyses (EPMA, WDS-Wavelength Dispersive Spectroscopy) and Raman spectra of all samples confirmed the stannite structure (Cu 2FeSnS4-type) as the main phase. In addition to the main phase, small amounts of secondary phases like ZnSe, CuSe and SnSe were observed. Transport properties of all samples were measured as a function of temperature in the range from 300 K to 720 K. The electrical resistivity of all samples decreases with an increase in Cu content except for Cu 2.1ZnSn0.9Se4, most likely due to a higher content of the ZnSe. All samples showed positive Seebeck coefficients indicating that holes are the majority charge carriers. The thermal conductivity of doped samples was high compared to Cu 2ZnSnSe4 and this may be due to the larger electronic contribution and the presence of the ZnSe phase in the doped samples. The maximum zT = 0.3 at 720 K occurs for Cu 2.05ZnSn0.95Se4 for which a high-pressure torsion treatment resulted in an enhancement of zT by 30% at 625 K.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermoelectric properties of chalcogenide based Cu2+xZnSn1−xSe4