1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Thermoelectric properties of chalcogenide based Cu2+xZnSn1−xSe4
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/3/10.1063/1.4794733
1.
1. Matsushita, H. , Takashi, M. , Akinori, K. , and Takeo, T , J. Cryst. Growth. 208, 416422 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00468-6
2.
2. Nolas, G. S. , Lin, X. , Martin, J. , Beekman, M. , and Wang, H , J. Electron. Mater. 38(7), 10521055 (2009).
http://dx.doi.org/10.1007/s11664-008-0629-7
3.
3. Slack G. A , CRC Handbook of Thermoelectrics, edited by Rowe D. M. (CRC, Boca Raton, 1995), p. 407.
4.
4. Liu, M.-L. , Huang, F.-Q. , Chen, L.-D. , and Chen, I-W , Appl. Phys. Lett. 94, 202103 (2009).
http://dx.doi.org/10.1063/1.3130718
5.
5. Liu, M.-L. , Chen, I-W. , Huang, F.-Q. , and Chen, L.-D , Adv. Mater. 21, 38083812 (2009).
http://dx.doi.org/10.1002/adma.200900409
6.
6. C. H. L. GOODMAN, J. Phys. Chem. Solids Pergamon Press 6, 305314 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90050-7
7.
7. Shi, X. Y. , Huang, F. Q. , Liu, M. L. , and Chen, L. D , Appl. Phys. Lett. 94, 122103 (2009).
http://dx.doi.org/10.1063/1.3103604
8.
8. Zeier, W. G , Lalonde, A. , Gibbs, Z. M. , Heinrich, C. P. , Panthöfer, M. , Snyder, G. J. , and Tremel, W. , J. Am. Chem. Soc, 134, 71477154 (2012).
http://dx.doi.org/10.1021/ja301452j
9.
9. Fan, F.-J. , Yu, B. , Wang, Y. , Zhu, Y.-L. , Liu, X.-J. , Yu, S.-H. , and Ren Z , J. Am. Chem. Soc. 133(40) 1591015913 (2011).
http://dx.doi.org/10.1021/ja207159j
10.
10. Ibanez, M. , Cadavid, D. , Zamani, R. , Garcia-Castello, N. , Izquierdo-Roca, V. , Li, W. , Fairbrother, A. , Prades, J. D. , Shavel, A. , Arbiol, J. , Perez-Rodriguez, A. , Morante, J. R. , and Cabot A , Chem. Mater. 24, 562570 (2012).
http://dx.doi.org/10.1021/cm2031812
11.
11. M. Ibanez, R. Zamani, A. LaLonde, D. Cadavid, W. H. Li, A. Shavel, J. Arbiol, J. R. Morante, S. Gorsse, G. J. Snyder, and A. Cabot, J. Am.Chem. Soc. 134, 4060 (2012).
http://dx.doi.org/10.1021/ja211952z
12.
12. Fan, F.-J. , Wang, Y.-X. , Liu, X.-J. , Wu, L. , and Yu, S.-H , Adv. Mater. 24, 61586163 (2012).
http://dx.doi.org/10.1002/adma.201202860
13.
13. Roisnel, T. , Rodriguez-Carvajal, J. Mater. Sci. Forum. 118, 378381 (2001).
14.
14. Goryunova, N. A. , Kotovich, V. A. , and Frank Kamenetskii, V. A , Doklady Akademii Nauk SSSR 103, 659662 (1955).
15.
15. M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, Phys. Stat. Sol. a 205(1), 167170 (2008).
http://dx.doi.org/10.1002/pssa.200776839
16.
16. Yamamoto, K. and Kashida, S , J.Solid St.Chem 93, 202211 (1991).
http://dx.doi.org/10.1016/0022-4596(91)90289-T
17.
17. O. Madelung, in Semiconductors: Data Handbook, 3rd Ed. (Springer, Berlin Heidelberg New York, 2004).
18.
18. B. K. Reddy, M. M. Reddy, R. Venugopal, and D. R. Reddy, Radiation Effects and Defects in Solids 145, 133142 (1998).
http://dx.doi.org/10.1080/10420159808220029
19.
19. S. Asanabe, J. Phys. Soc. Japan 14, 281 (1959).
http://dx.doi.org/10.1143/JPSJ.14.281
20.
20. Z. Ogorelic and D. Selinger, J.Mater.Sci 6, 136139 (1971).
http://dx.doi.org/10.1007/BF00550344
21.
21. F. J. Blatt, Physics of electronic conduction in solids, p. 210 (McGraw-Hill, New York, 1968).
22.
22. G. Rogl, D. Setman, E. Schafler, J. Horky, M. Kerber, M. Zehetbauer, M. Falmbigl, P. Rogl, E. Royanian, and E. Bauer, Acta Materialia, 60(5), 21462157 (2012).
http://dx.doi.org/10.1016/j.actamat.2011.12.023
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4794733
Loading
/content/aip/journal/adva/3/3/10.1063/1.4794733
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4794733
2013-03-01
2014-09-01

Abstract

Quaternary chalcogenide compounds Cu 2+xZnSn1−xSe4 (0 ≤ x ≤ 0.15) were prepared by solid state synthesis. Rietveld powder X-ray diffraction (XRD) refinements combined with Electron Probe Micro Analyses (EPMA, WDS-Wavelength Dispersive Spectroscopy) and Raman spectra of all samples confirmed the stannite structure (Cu 2FeSnS4-type) as the main phase. In addition to the main phase, small amounts of secondary phases like ZnSe, CuSe and SnSe were observed. Transport properties of all samples were measured as a function of temperature in the range from 300 K to 720 K. The electrical resistivity of all samples decreases with an increase in Cu content except for Cu 2.1ZnSn0.9Se4, most likely due to a higher content of the ZnSe. All samples showed positive Seebeck coefficients indicating that holes are the majority charge carriers. The thermal conductivity of doped samples was high compared to Cu 2ZnSnSe4 and this may be due to the larger electronic contribution and the presence of the ZnSe phase in the doped samples. The maximum zT = 0.3 at 720 K occurs for Cu 2.05ZnSn0.95Se4 for which a high-pressure torsion treatment resulted in an enhancement of zT by 30% at 625 K.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4794733.html;jsessionid=3ib34tr112980.x-aip-live-06?itemId=/content/aip/journal/adva/3/3/10.1063/1.4794733&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermoelectric properties of chalcogenide based Cu2+xZnSn1−xSe4
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4794733
10.1063/1.4794733
SEARCH_EXPAND_ITEM