1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Laser-induced precession of magnetization in ferrimagnetic GdFe thin films with low power excitation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/3/10.1063/1.4794737
1.
1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
2. J. Åkerman, Science 308, 508 (2005).
http://dx.doi.org/10.1126/science.1110549
3.
3. E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4250
4.
4. G. Ju, A. V. Nurmikko, R. F. C. Farrow, R. F. Marks, M. J. Carey, and B. A. Gurney, Phys. Rev. Lett. 82, 3705 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3705
5.
5. M. van Kampen, C. Jozsa, J. T. Kohlhepp, P. LeClair, L. Lagae, W. J. M. de Jonge, and B. Koopmans, Phys. Rev. Lett. 88, 227201 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.227201
6.
6. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, Phys. Rev. Lett. 98, 207401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.207401
7.
7. S. Mizukami, E. P. Sajitha, D. Watanabe, F. Wu, T. Miyazaki, H. Naganuma, M. Oogane, and Y. Ando, Appl. Phys. Lett. 96, 152502 (2010).
http://dx.doi.org/10.1063/1.3396983
8.
8. F. Hansteen, A. Kimel, A. Kirilyuk, and Th. Rasing, Phys. Rev. B 73, 014421 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.014421
9.
9. K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, Phys. Rev. Lett. 103, 117201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.117201
10.
10. R. Akimoto, K. Ando, F. Sasaki, S. Kobayashi, and T. Tani, J. Appl. Phys. 84, 6318 (1998).
http://dx.doi.org/10.1063/1.368955
11.
11. Y. Hashimoto, S. Kobayashi, and H. Munekata, Phys. Rev. Lett. 100, 067202 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.067202
12.
12. J. Qi, Y. Xu, A. Steigerwald, X. Liu, J. J , Furdyna, I. E. Perakis, and N. H. Tolk, Phys. Rev. B 79, 085304 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.085304
13.
13. T. Eimüller, A. Scholl, B. Ludescher, G. Schütz, and J.-U. Thiele, Appl. Phys. Lett. 91, 042508 (2007).
http://dx.doi.org/10.1063/1.2760152
14.
14. M. Mansuripur and M. F. Ruane, IEEE, Trans. Magn. Mag. 22, 33 (1986).
http://dx.doi.org/10.1109/TMAG.1986.1064266
15.
15. S. Tsunashima, J. Phys. D 34, R87 (2001).
http://dx.doi.org/10.1088/0022-3727/34/17/201
16.
16. O. W. Shih, J. Appl. Phys. 75, 4382 (1994).
http://dx.doi.org/10.1063/1.355982
17.
17. B. Koopmans, in Spin Dynamics in Confined Magnetic Structures II, Topics in Applied Physics, edited by B. Hillebrands, K. Ounadjela (Springer, Berlin, 2003), Vol. 87, pp. 253316.
18.
18. R. F. Soohoo and A. H. Morrish, J. Appl. Phys. 50, 3 (1979).
http://dx.doi.org/10.1063/1.327222
19.
19. Y. Hashimoto and H. Munekata, Appl. Phys. Lett. 93, 202506 (2008).
http://dx.doi.org/10.1063/1.3030988
20.
20. Y. Suzuki, G. Hu, R. B. van Dover, and R. J. Cava, J. Mag. Mgn. Mat. 191, 1 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)00364-3
21.
21. E. Lage1, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knöchel, E. Quandt, and D. Meyners, Nature Mater. 11, 523 (2012).
http://dx.doi.org/10.1038/nmat3306
22.
22. P. Hansen, C. Clausen, G. Much, M. Rosenkranz, and K. Witter, J. Appl. Phys. 66, 756 (1989).
http://dx.doi.org/10.1063/1.343551
23.
23. R. C. Taylor and A. Gangulee, J. Appl. Phys. 48, 358 (1977).
http://dx.doi.org/10.1063/1.323387
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4794737
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Temporal MOKE profiles obtained for two different external fields H ext = 1000 and 250 Oe with pump fluencies of I 0, 3 I 0, and 4 I 0 (I 0 = 12 μJ/cm2). (b) A plot of precession amplitude at the first oscillation θ MOKE 1st under 250 and 1000 Oe, representing the angle between H eff and M at t ∼ 0 ps, vs. pump fluence I pump. The inset shows the temporal MOKE profile obtained for H ext = 250 Oe with 6 μJ/cm2. (c) Schematic diagram of laser-induced magnetization precession: (c-1) In equilibrium, magnetization, M , is parallel to the effective field H eff. (c-2) A laser pulse tips off H eff and M starts precessing about a new effective field, H eff’. (c-3) M keeps precessing about a slowly relaxing H eff’ with natural damping. H eff’ is assumed to relax back to its initial state H eff within the laser pulse interval of 13 nsec. (d) Plots of precession frequency Ω vs. I pump with various H ext.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Plots of precession frequency Ω as a function of external field H ext for two different pump fluences I pump = 12 (gray circles) and 36 (black circles) μJ/cm2. Solid lines are theoretical fits to the experimental data obtained with I pump = 12 (gray lines) and 36 (black lines) μJ/cm2. (b) A plot of /dI pump as function of H ext. Solid lines are theoretical fits to experimental data. Inset shows temperature dependence of H ani extracted from magnetization curves measured along a hard axis.

Image of FIG. 3.

Click to view

FIG. 3.

Temporal MOKE profiles (closed symbols) obtained for two, sequential pump pulses, P1 and P2, under two different external magnetic fields, H ext = 1000 and 2000 Oe. Arrows represent graphically the time of arrival of the second pulse P2, whereas Δt is the time interval between P1 and P2. Profiles obtained for one pump pulse (P1 only, open symbols) are also presented for comparison. Inset shows MOKE hysteresis loop at T = 300 K measured with H ext to the surface.

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4794737
2013-03-01
2014-04-20

Abstract

We have investigated thermal effects on the dynamics of laser-induced precession of magnetization in ferrimagnetic GdFe thin films under low-excitation conditions (6-60 μJ/cm2). An increase in quasi-equilibrium temperature by laser heating causes a shift in precession frequency, which is explained analytically by the alteration of the magnetic anisotropy field by 2.2 [Oe] at a pulse fluence of 1 μJ/cm2. We have also demonstrated coherent control of the precession amplitude using a sequence of two laser pulses, each with a fluence of 18 μJ/cm2, and point out the importance of low-power excitation for precise control of the dynamic states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4794737.html;jsessionid=32psbqtpib1ph.x-aip-live-03?itemId=/content/aip/journal/adva/3/3/10.1063/1.4794737&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Laser-induced precession of magnetization in ferrimagnetic GdFe thin films with low power excitation
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4794737
10.1063/1.4794737
SEARCH_EXPAND_ITEM