1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Laser-induced precession of magnetization in ferrimagnetic GdFe thin films with low power excitation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/3/10.1063/1.4794737
1.
1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
2. J. Åkerman, Science 308, 508 (2005).
http://dx.doi.org/10.1126/science.1110549
3.
3. E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4250
4.
4. G. Ju, A. V. Nurmikko, R. F. C. Farrow, R. F. Marks, M. J. Carey, and B. A. Gurney, Phys. Rev. Lett. 82, 3705 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3705
5.
5. M. van Kampen, C. Jozsa, J. T. Kohlhepp, P. LeClair, L. Lagae, W. J. M. de Jonge, and B. Koopmans, Phys. Rev. Lett. 88, 227201 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.227201
6.
6. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, Phys. Rev. Lett. 98, 207401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.207401
7.
7. S. Mizukami, E. P. Sajitha, D. Watanabe, F. Wu, T. Miyazaki, H. Naganuma, M. Oogane, and Y. Ando, Appl. Phys. Lett. 96, 152502 (2010).
http://dx.doi.org/10.1063/1.3396983
8.
8. F. Hansteen, A. Kimel, A. Kirilyuk, and Th. Rasing, Phys. Rev. B 73, 014421 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.014421
9.
9. K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, Phys. Rev. Lett. 103, 117201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.117201
10.
10. R. Akimoto, K. Ando, F. Sasaki, S. Kobayashi, and T. Tani, J. Appl. Phys. 84, 6318 (1998).
http://dx.doi.org/10.1063/1.368955
11.
11. Y. Hashimoto, S. Kobayashi, and H. Munekata, Phys. Rev. Lett. 100, 067202 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.067202
12.
12. J. Qi, Y. Xu, A. Steigerwald, X. Liu, J. J , Furdyna, I. E. Perakis, and N. H. Tolk, Phys. Rev. B 79, 085304 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.085304
13.
13. T. Eimüller, A. Scholl, B. Ludescher, G. Schütz, and J.-U. Thiele, Appl. Phys. Lett. 91, 042508 (2007).
http://dx.doi.org/10.1063/1.2760152
14.
14. M. Mansuripur and M. F. Ruane, IEEE, Trans. Magn. Mag. 22, 33 (1986).
http://dx.doi.org/10.1109/TMAG.1986.1064266
15.
15. S. Tsunashima, J. Phys. D 34, R87 (2001).
http://dx.doi.org/10.1088/0022-3727/34/17/201
16.
16. O. W. Shih, J. Appl. Phys. 75, 4382 (1994).
http://dx.doi.org/10.1063/1.355982
17.
17. B. Koopmans, in Spin Dynamics in Confined Magnetic Structures II, Topics in Applied Physics, edited by B. Hillebrands, K. Ounadjela (Springer, Berlin, 2003), Vol. 87, pp. 253316.
18.
18. R. F. Soohoo and A. H. Morrish, J. Appl. Phys. 50, 3 (1979).
http://dx.doi.org/10.1063/1.327222
19.
19. Y. Hashimoto and H. Munekata, Appl. Phys. Lett. 93, 202506 (2008).
http://dx.doi.org/10.1063/1.3030988
20.
20. Y. Suzuki, G. Hu, R. B. van Dover, and R. J. Cava, J. Mag. Mgn. Mat. 191, 1 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)00364-3
21.
21. E. Lage1, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knöchel, E. Quandt, and D. Meyners, Nature Mater. 11, 523 (2012).
http://dx.doi.org/10.1038/nmat3306
22.
22. P. Hansen, C. Clausen, G. Much, M. Rosenkranz, and K. Witter, J. Appl. Phys. 66, 756 (1989).
http://dx.doi.org/10.1063/1.343551
23.
23. R. C. Taylor and A. Gangulee, J. Appl. Phys. 48, 358 (1977).
http://dx.doi.org/10.1063/1.323387
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4794737
Loading
/content/aip/journal/adva/3/3/10.1063/1.4794737
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4794737
2013-03-01
2014-08-01

Abstract

We have investigated thermal effects on the dynamics of laser-induced precession of magnetization in ferrimagnetic GdFe thin films under low-excitation conditions (6-60 μJ/cm2). An increase in quasi-equilibrium temperature by laser heating causes a shift in precession frequency, which is explained analytically by the alteration of the magnetic anisotropy field by 2.2 [Oe] at a pulse fluence of 1 μJ/cm2. We have also demonstrated coherent control of the precession amplitude using a sequence of two laser pulses, each with a fluence of 18 μJ/cm2, and point out the importance of low-power excitation for precise control of the dynamic states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4794737.html;jsessionid=9b8q6orj4qs9c.x-aip-live-02?itemId=/content/aip/journal/adva/3/3/10.1063/1.4794737&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Laser-induced precession of magnetization in ferrimagnetic GdFe thin films with low power excitation
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4794737
10.1063/1.4794737
SEARCH_EXPAND_ITEM