Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39(2), 159169 (2005).
2. J. W. M. Bush and J. M. Aristoff, “The influence of surface tension on the circular hydraulic jump,” J. Fluid Mech. 489, 229238 (2003).
4. D. L. Dorset, “Development of lamellar structures in natural waxes - an electron diffraction investigation,” J. Phys. D 32, 12761280 (1999).
5. C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” ChemPhysChem 6, 791804 (2005).
6. M. Fikry, M. M. Omar, and L. Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine B in liquid and solid phase,” J. Fluoresc. 19(4), 741746 (2009).
7. A. O. Hanstveit, “Biodegradability of petroleum waxes and beeswax in an adapted CO2 evolution test,” Chemosphere 25(4), 605620 (1992).
8. A. Hauet, A. Kruger, W. Krajewski, A. Bradley, M. Muste, J. D. Creutin, and M. Wilson, “Experimental system for real-time discharge estimation using an image-based method,” J. Hydrol. Eng. 13(2), 105110 (2008).
9. S. Jin, P. Huang, J. Park, J. Y. Yoo, and K. S. Breuer, “Near-surface velocimetry using evanescent wave illumination,” Exp. Fluids 37(6), 825833 (2004).
10. L. Kemp, E. C. Jamieron, and S. J. Gaskin, “Phosphorescent tracer particles for lagrangian flow measurement and particle tracking velocimetry,” Exp. Fluids 48(5), 927931 (2010).
11. M. Kubista, R. Sjöback, S. Eriksson, and B. Albinsson, “Experimental correction for the inner-filter effect in fluorescence spectra,” Analyst 119(3), 417419 (1994).
12. A. Kurian, N. A. George, B. Paul, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies on fluorescence efficiency and photodegradation of rhodamine 6G doped PMMA using a dual beam thermal lens technique,” Laser Chem. 20(2–4), 99110 (2002).
13. C. Leibundgut, P. Maloszewski, and C. Külls, Tracers in Hydrology (Wiley-Blackwell, Oxford, UK, 2009).
14. A. Melling, “Tracer particles and seeding for particle image velocimetry,” Measurement Science and Technology 8(12), 14061416 (1997).
15. M. Nakanishi, O. Sugihara, N. Okamoto, and K. Hirota, “Ultraviolet photobleaching process of azo dye doped polymer and silica films for fabrication of nonlinear optical waveguides,” Appl. Optics 37(6), 10681073 (1998).
16. F. Pedocchi, J. Martin, and M. H. García, “Inexpensive fluorescent particles for large-scale experiments using particle image velocimetry,” Exp. Fluids 45(1), 183186 (2008).
17. M. S. Pervez and T. H. Solomon, “Long-term tracking of neutrally buoyant tracer particles in two-dimensional fluid flows,” Exp. Fluids 17(3), 135140 (1994).
18. F. Tauro, S. Grimaldi, A. Petroselli, and M. Porfiri, “Fluorescent particle tracers in surface hydrology: a proof of concept in a natural stream,” Water Resour. Res. 48, W06528, doi:10.1029/2011WR011610 (2011).
19. F. Tauro, S. Grimaldi, A. Petroselli, M. C. Rulli, and M. Porfiri, “Fluorescent particle tracers in surface hydrology: a proof of concept in a semi-natural hillslope,” Hydrol. Earth Syst. Sci. 16, 29732983 (2012).
20. F. Tauro, C. Pagano, M. Porfiri, and S. Grimaldi, “Tracing of shallow water flows through buoyant fluorescent particles,” Flow Meas. Instrum. 26, 93101 (2011).
21. D. E. Turney, A. Anderer, and S. Banerjee, “A method for three-dimensional interfacial particle image velocimetry (3D-IPIV) of an air-water interface,” Meas. Sci. Technol. 20(4), 045403 (2009).
22. G. T. Vladisavljević, U. Lambrich, M. Nakajima, and H. Schubert, “Production of O/W emulsions using SPG membranes, ceramic α-aluminum oxide membranes, microfluidizer and a silicon microchannel plate - a comparative study,” Colloid. Surface. A 232(2–3), 199207 (2004).
23. E. J. Watson, “The radial spread of a liquid jet over a horizontal plane,” J. Fluid Mech. 20, 481499 (1964).

Data & Media loading...


Article metrics loading...



In this letter, we describe a novel methodology for fabricating inexpensive environmentally-friendly fluorescent microparticles for quantitative surface flow visualization. Particles are synthesized from natural white beeswax and a highly diluted solution of a nontoxic fluorescent red dye. Bead fluorescence exhibits a long lifetime in adverse conditions, such as exposure to weathering agents, and is enhanced by Ultra Violet radiation. The fluorescent eco-particles are integrated in a particle image velocimetry study of circular hydraulic jump to demonstrate their feasibility in tracing complex surface flows.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd