Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/3/10.1063/1.4794798
1.
1. R. H. French et al., Rev. Mod. Phys. 82, 1887 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1887
2.
2. E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier).
3.
3. B. W. Ninham, Adv. Colloid and Interface Sci. 83, 1 (1999).
http://dx.doi.org/10.1016/S0001-8686(99)00008-1
4.
4. B. V. Derjaguin, Kolloid Z., 69, 155 (1934).
http://dx.doi.org/10.1007/BF01433225
5.
5. D. Henderson, Fundamentals of Inhomogeneous Fluids (Marcel Dekker, New York, 1992).
6.
6. J. N. Israelachvili, Intermolecular and Surface Forces, 3rd ed. (Academic Press, San Diego, 2011).
7.
7. B. A. Todd and S. J. Eppell, Langmuir 20, 4892 (2004).
http://dx.doi.org/10.1021/la035235d
8.
8. L. Guldbrand, B. Jőnsson, H. Wennerstrőm, and P. Linse, J.Chem. Phys. 80, 2221 (1984);
http://dx.doi.org/10.1063/1.446912
8.C. Guaqueta and E. Luijten, Phys. Rev. Lett. 99, 138302 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.138302
9.
9. A. Khan, K. Fontell, and B. Lindman, Colloids Surf. 11, 401 (1984);
http://dx.doi.org/10.1016/0166-6622(84)80293-0
9.R. Kjellander, S. Marčelja, R. M. Pashley, and J. P. Quirk, J. Phys. Chem. 92, 6489 (1988).
http://dx.doi.org/10.1021/j100334a005
10.
10. N. Grønbech-Jensen, R. J. Mashl, R. F. Bruinsma, and W. M. Gelbart, Phys. Rev. Lett. 78, 2477 (1997);
http://dx.doi.org/10.1103/PhysRevLett.78.2477
10.A. Cuetos, J. A. Anta, and A. M. Puertas, J. Chem. Phys. 133, 154906 (2010).
http://dx.doi.org/10.1063/1.3505148
11.
11. B.-Y. Ha and A. J. Liu, Phys. Rev. Lett. 79, 1289 (1997);
http://dx.doi.org/10.1103/PhysRevLett.79.1289
11.B. I. Shklovskii, Phys. Rev. Lett. 82, 3268 (1999);
http://dx.doi.org/10.1103/PhysRevLett.82.3268
11.L. Šamaj and E. Trizac, Phys. Rev. Lett. 106, 078301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.078301
12.
12. J. C. Butler, T. Angelini, J. X. Tang, and G. C. L. Wong, Phys. Rev. Lett. 91, 028301 (2003);
http://dx.doi.org/10.1103/PhysRevLett.91.028301
12.Q. Wen and J. X. Tang, Phys. Rev. Lett. 97, 048101 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.048101
13.
13. A. Arnold and C. Holm, Eur. Phys. J. E 27, 21 (2008).
http://dx.doi.org/10.1140/epje/i2007-10347-4
14.
14. Z. Tang, L. E. Scriven, and H. T. Davis, J. Chem. Phys. 97, 9258 (1992).
http://dx.doi.org/10.1063/1.463301
15.
15. T. Goel, C. N. Patra, S. K. Ghosh, and T. Mukherjee, J. Chem. Phys. 132, 194706 (2010).
http://dx.doi.org/10.1063/1.3428702
16.
16. A. Oleksy and J.-P. Hansen, Mol. Phys. 104, 2871 (2006).
http://dx.doi.org/10.1080/00268970600864491
17.
17. Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.980
18.
18. L. Blum, Molec. Phys. 30, 1529 (1975);
http://dx.doi.org/10.1080/00268977500103051
18.K. Hiroike, Molec. Phys. 33, 1195 (1977).
http://dx.doi.org/10.1080/00268977700101011
19.
19. M. Pernice and H. F. Walker, SIAM J. Sci. Comput. 19, 302 (1998).
http://dx.doi.org/10.1137/S1064827596303843
20.
20. F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971).
21.
21. I. Rouzina and V. A. Bloomfield, J. Phys. Chem. 100, 9977 (1996).
http://dx.doi.org/10.1021/jp960458g
22.
22. G. M. Kepler and S. Fraden, Phys. Rev. Lett. 73, 356 (1994);
http://dx.doi.org/10.1103/PhysRevLett.73.356
22.M. D. Carbajal-Tinoco, F. Castro-Román, and J. L. Arauz-Lara, Phys. Rev. E 53, 3745 (1996);
http://dx.doi.org/10.1103/PhysRevE.53.3745
22.B. V. R. Tata, M. Rajalakshmi, and A. K. Arora, Phys. Rev. Lett. 69, 3778 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.3778
23.
23. H. Boroudjerdi, Y.-W. Kim, A. Naji, R. R. Netz, X. Schlagberger, and A. Serr, Phys. Rep. 416, 129 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.06.006
24.
24. P. Linse, J. Phys.: Condens. Matter 14, 13449 (2002).
http://dx.doi.org/10.1088/0953-8984/14/49/304
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4794798
Loading
/content/aip/journal/adva/3/3/10.1063/1.4794798
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4794798
2013-03-04
2016-12-09

Abstract

For the first time, the classical density functional theory (DFT) is numerically solved in three- and two-dimensional spaces for a two sphere model of electrostatic interactions between two spherical nanoscale colloids immersed in a primitive model electrolyte solution. Two scientific anomalies are found that (i) contrary to what is often asserted that presence of multivalent counter ion is necessary to induce a like-charge attraction (LCA), univalent counter ion also induces the LCA only if bulk electrolyte concentration and colloid surface charge are high enough, and (ii) although the LCA in general becomes stronger with the bulk electrolyte concentration, adverse effects unexpectedly occur if the colloid surface charge quantity rises sufficiently. In addition, effects of counter ion and co-ion diameters in eliciting the LCA are first investigated and several novel phenomena such as monotonic and non-monotonic dependence of the LCA well depth on the counter ion diameter in different colloid surface charge zones are confirmed. Based these findings, a hydrogen bonding style mechanism is suggested and surprisingly, by appealing to fairly common-sense concepts such as bond energy, bond length, number of hydrogen bonds formed, and counter ion single-layer saturation adsorption capacity, self-consistently explains origin of the LCA between two spherical nanoscale particles, and all phenomena previously reported and observed in this study.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4794798.html;jsessionid=rh6TmgWtNJsV992-m3u7XyTD.x-aip-live-02?itemId=/content/aip/journal/adva/3/3/10.1063/1.4794798&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/3/10.1063/1.4794798&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/3/10.1063/1.4794798'
Right1,Right2,Right3,