1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Peculiarly strong room-temperature ferromagnetism from low Mn-doping in ZnO grown by molecular beam epitaxy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/3/10.1063/1.4794799
1.
1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
2.
2. D. D. Awschalom and M. E. Flatte, Nature Physics 3, 153 (2007).
http://dx.doi.org/10.1038/nphys551
3.
3. S. B. Ogale, Adv. Mater. 22 3125 (2010).
http://dx.doi.org/10.1002/adma.200903891
4.
4. A. H. Macdonald, P. Schiffer, and N. Samarth, Nature Materials 4, 195 (2005).
http://dx.doi.org/10.1038/nmat1325
5.
5. K. Sato and H. Katayama-Yoshida, Jpn. J. Appl.Phys. 40, L334 (2001).
http://dx.doi.org/10.1143/JJAP.40.L334
6.
6. S. W. Jung, S. J. An, Gyu-Chul Yi, C. U. Jung, Sung-Ik Lee, and Sunglae Cho, Appl. Phys. Lett. 80, 4561 (2002).
http://dx.doi.org/10.1063/1.1487927
7.
7. J. Alaria, P. Turek, M. Bernard, M. Bouloudenine, A. Berbadj, N. Brihi, G. Schmerber, S. Colis, and A. Dinia, Chem. Phys. Lett. 415, 337 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.09.003
8.
8. P. Shama, A. Gupta, K. V. Rao, F. J. Owens, R. Shama, R. Ahuja, J. M. Osorio Guillen, B. Johansson, and G. A. Gehring, Nature Materials 2, 673 (2003).
http://dx.doi.org/10.1038/nmat984
9.
9. Y. F. Tian, Y. F. Li, M. He, I. A. Putra, H. Y. Peng, B. Yao, S. A. Cheong, and T. Wu, Appl. Phys. Lett. 98, 162503 (2011).
http://dx.doi.org/10.1063/1.3579544
10.
10. D. P. Norton, M. E. Overberg, S. J. Pearton, K. Pruessner, J. D. Budai, L. A. Boatner, M. F. Chisholm, J. S. Lee, Z. G. Khim, Y. D. Park, and R. G. Wilson, Appl. Phys. Lett. 83, 5488 (2003).
http://dx.doi.org/10.1063/1.1637719
11.
11. Z. Yang, J. L. Liu, M. Biasini, and W. P. Beyermann, Appl. Phys. Lett. 92, 042111 (2008).
http://dx.doi.org/10.1063/1.2838753
12.
12. Z. Yang, W. P. Beyermann, M. B. Katz, O. K. Ezekoye, Z. Zuo, Y. Pu, J. Shi, X. Q. Pan, and J. L. Liu, J. Appl. Phys. 105, 053708 (2009).
http://dx.doi.org/10.1063/1.3087473
13.
13. X. M. Cheng and C. L. Chien, J. Appl. Phys. 93, 7876 (2003).
http://dx.doi.org/10.1063/1.1556125
14.
14. T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Appl. Phys. Lett. 78, 958 (2001).
http://dx.doi.org/10.1063/1.1348323
15.
15. C. Tuan, J. D. Bryan, A. B. Pakhomov, V. Shutthanandan, S. Thevuthasan, D. E. Mccready, D. Gaspar, M. H. Engelhard, J. W. Rogers, Jr., K. Krishnan, D. R. Gamelin, and S. A. Chambers, Phys. Rev. B 70, 054424 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.054424
16.
16. X. J. Wang, I. A. Buyanova, W. M. Chen, C. J. Pan, and C. W. Tu, J. Appl. Phys. 103, 023712 (2008).
http://dx.doi.org/10.1063/1.2833434
17.
17. Z. Yang, Z. Zuo, H. Zhou, W. P. Beyermann, and J. Liu, J. Crys. Grow. 314, 97 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2010.11.059
18.
18. Z. Zuo, H. Zhou, M. J. Olmedo, J. Kong, W. P. Beyermann, J. G. Zheng, Y. Xin, and J. Liu, J. Appl. Phys. 112, 125103 (2012).
http://dx.doi.org/10.1063/1.4749397
19.
19. C. Liu, F. Yun, and H. Morkoc, J. Mater. Sci. Mater. Elec. 16, 555 (2005).
http://dx.doi.org/10.1007/s10854-005-3232-1
20.
20. G. Lawes, A. S. Risbud, A. P. Ramirez, and R. Seshadri, Phys.Rev. B 71, 045201 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.045201
21.
21. J. M. D Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials 4 173 (2005).
http://dx.doi.org/10.1038/nmat1310
22.
22. A. C. Durst, R. N. Bhatt, and P. A. Wolff, Phys. Rev. B 65 235205 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.235205
23.
23. Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe, Phys. Rev. B 79, 115407 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115407
24.
24. K. R. Kittilstved, N. S. Norberg, and D. R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.147209
25.
25. T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 3366 (1999).
http://dx.doi.org/10.1063/1.125353
26.
26. M. A. Garcia, E. Fernandez Pinel, J. de la Venta, A. Quesada, V. Bouzas, J. F. Fernández, J. J. Romero, M. S. Martín González, and J. L. Costa-Krämer, J. Appl. Phys. 105, 013925 (2009).
http://dx.doi.org/10.1063/1.3060808
27.
27. M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, Phys. Rev. B 84 035313 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.035313
28.
28. Ü. Özgür,Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041391 (2005).
29.
29. A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195207
30.
30. T. Andrearczyk, J. Jaroszyński, G. Grabecki, T. Dietl, T. Fukumura, and M. Kawasaki, Phys. Rev. B 72, 121309R (2005).
http://dx.doi.org/10.1103/PhysRevB.72.121309
31.
31. M. Gacic, G. Jakob, C. Herbort, and H. Adrian, Phys. Rev. B 75, 205206 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205206
32.
32. M. A. García, M. L. Ruiz-González, A. Quesada, J. L. Costa-Krämer, J. F. Fernández, S. J. Khatib, A. Wennberg, A. C. Caballero, M. S. Martín-González, M. Villegas, F. Briones, J. M. González-Calbet, and A. Hernando, Phys. Rev. Lett. 94, 217205 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.217205
33.
33. T. Dietl, Nature Materials 9, 965 (2010).
http://dx.doi.org/10.1038/nmat2898
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4794799
Loading
/content/aip/journal/adva/3/3/10.1063/1.4794799
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4794799
2013-03-04
2014-07-29

Abstract

Strong room-temperature ferromagnetism is demonstrated in single crystalline Mn-doped ZnO thin films grown by molecular beam epitaxy. Very low Mn doping concentration is investigated, and the measured magnetic moment is much larger than what is expected for an isolated ion based on Hund's rules. The ferromagnetic behavior evolves with Mn concentration. Both magnetic anisotropy and anomalous Hall effect confirm the intrinsic nature of ferromagnetism. While the Mn dopant plays a crucial role, another entity in the system is needed to explain the observed large magnetic moments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4794799.html;jsessionid=39x9cqkcugmbv.x-aip-live-06?itemId=/content/aip/journal/adva/3/3/10.1063/1.4794799&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Peculiarly strong room-temperature ferromagnetism from low Mn-doping in ZnO grown by molecular beam epitaxy
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4794799
10.1063/1.4794799
SEARCH_EXPAND_ITEM