Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
2. D. D. Awschalom and M. E. Flatte, Nature Physics 3, 153 (2007).
3. S. B. Ogale, Adv. Mater. 22 3125 (2010).
4. A. H. Macdonald, P. Schiffer, and N. Samarth, Nature Materials 4, 195 (2005).
5. K. Sato and H. Katayama-Yoshida, Jpn. J. Appl.Phys. 40, L334 (2001).
6. S. W. Jung, S. J. An, Gyu-Chul Yi, C. U. Jung, Sung-Ik Lee, and Sunglae Cho, Appl. Phys. Lett. 80, 4561 (2002).
7. J. Alaria, P. Turek, M. Bernard, M. Bouloudenine, A. Berbadj, N. Brihi, G. Schmerber, S. Colis, and A. Dinia, Chem. Phys. Lett. 415, 337 (2005).
8. P. Shama, A. Gupta, K. V. Rao, F. J. Owens, R. Shama, R. Ahuja, J. M. Osorio Guillen, B. Johansson, and G. A. Gehring, Nature Materials 2, 673 (2003).
9. Y. F. Tian, Y. F. Li, M. He, I. A. Putra, H. Y. Peng, B. Yao, S. A. Cheong, and T. Wu, Appl. Phys. Lett. 98, 162503 (2011).
10. D. P. Norton, M. E. Overberg, S. J. Pearton, K. Pruessner, J. D. Budai, L. A. Boatner, M. F. Chisholm, J. S. Lee, Z. G. Khim, Y. D. Park, and R. G. Wilson, Appl. Phys. Lett. 83, 5488 (2003).
11. Z. Yang, J. L. Liu, M. Biasini, and W. P. Beyermann, Appl. Phys. Lett. 92, 042111 (2008).
12. Z. Yang, W. P. Beyermann, M. B. Katz, O. K. Ezekoye, Z. Zuo, Y. Pu, J. Shi, X. Q. Pan, and J. L. Liu, J. Appl. Phys. 105, 053708 (2009).
13. X. M. Cheng and C. L. Chien, J. Appl. Phys. 93, 7876 (2003).
14. T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Appl. Phys. Lett. 78, 958 (2001).
15. C. Tuan, J. D. Bryan, A. B. Pakhomov, V. Shutthanandan, S. Thevuthasan, D. E. Mccready, D. Gaspar, M. H. Engelhard, J. W. Rogers, Jr., K. Krishnan, D. R. Gamelin, and S. A. Chambers, Phys. Rev. B 70, 054424 (2004).
16. X. J. Wang, I. A. Buyanova, W. M. Chen, C. J. Pan, and C. W. Tu, J. Appl. Phys. 103, 023712 (2008).
17. Z. Yang, Z. Zuo, H. Zhou, W. P. Beyermann, and J. Liu, J. Crys. Grow. 314, 97 (2011).
18. Z. Zuo, H. Zhou, M. J. Olmedo, J. Kong, W. P. Beyermann, J. G. Zheng, Y. Xin, and J. Liu, J. Appl. Phys. 112, 125103 (2012).
19. C. Liu, F. Yun, and H. Morkoc, J. Mater. Sci. Mater. Elec. 16, 555 (2005).
20. G. Lawes, A. S. Risbud, A. P. Ramirez, and R. Seshadri, Phys.Rev. B 71, 045201 (2005).
21. J. M. D Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials 4 173 (2005).
22. A. C. Durst, R. N. Bhatt, and P. A. Wolff, Phys. Rev. B 65 235205 (2002).
23. Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe, Phys. Rev. B 79, 115407 (2009).
24. K. R. Kittilstved, N. S. Norberg, and D. R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005).
25. T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 3366 (1999).
26. M. A. Garcia, E. Fernandez Pinel, J. de la Venta, A. Quesada, V. Bouzas, J. F. Fernández, J. J. Romero, M. S. Martín González, and J. L. Costa-Krämer, J. Appl. Phys. 105, 013925 (2009).
27. M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, Phys. Rev. B 84 035313 (2011).
28. Ü. Özgür,Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041391 (2005).
29. A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).
30. T. Andrearczyk, J. Jaroszyński, G. Grabecki, T. Dietl, T. Fukumura, and M. Kawasaki, Phys. Rev. B 72, 121309R (2005).
31. M. Gacic, G. Jakob, C. Herbort, and H. Adrian, Phys. Rev. B 75, 205206 (2007).
32. M. A. García, M. L. Ruiz-González, A. Quesada, J. L. Costa-Krämer, J. F. Fernández, S. J. Khatib, A. Wennberg, A. C. Caballero, M. S. Martín-González, M. Villegas, F. Briones, J. M. González-Calbet, and A. Hernando, Phys. Rev. Lett. 94, 217205 (2005).
33. T. Dietl, Nature Materials 9, 965 (2010).

Data & Media loading...


Article metrics loading...



Strong room-temperature ferromagnetism is demonstrated in single crystalline Mn-doped ZnO thin films grown by molecular beam epitaxy. Very low Mn doping concentration is investigated, and the measured magnetic moment is much larger than what is expected for an isolated ion based on Hund's rules. The ferromagnetic behavior evolves with Mn concentration. Both magnetic anisotropy and anomalous Hall effect confirm the intrinsic nature of ferromagnetism. While the Mn dopant plays a crucial role, another entity in the system is needed to explain the observed large magnetic moments.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd