Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/3/10.1063/1.4794947
1.
1. C. Rogers and W. F. Shadwick (Academic Press, New York, 1982).
2.
2. M. J. Ablowitz and P. A. Clarkson (Cambridge Univ. Press, Cambridge, 1991).
3.
3. J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24, 522 (1982).
http://dx.doi.org/10.1063/1.525721
4.
4. N. A. Kudryashov, Phys. Lett. A 147, 287 (1990).
http://dx.doi.org/10.1016/0375-9601(90)90449-X
5.
5. R. Hirota, Phys. Rev. Lett. 27, 1192 (1971).
http://dx.doi.org/10.1103/PhysRevLett.27.1192
6.
6. S. Liu, Z. Fu, S. Liu, and Q. Zhao, Phys. Lett. A 289, 69 (2001).
http://dx.doi.org/10.1016/S0375-9601(01)00580-1
7.
7. Z. Yan and H. Q. Zhang, Phy. Lett. A 285, 355 (2001).
http://dx.doi.org/10.1016/S0375-9601(01)00376-0
8.
8. H. Naher, and F. A. Abdullah, J. Appl. Math., 18 pages, doi:10.1155/2012/486458.
http://dx.doi.org/10.1155/2012/486458
9.
9. W. Malfliet, Am. J. Phys. 60, 650 (1992).
http://dx.doi.org/10.1119/1.17120
10.
10. A. M. Wazwaz, Appl. Math. and Comput. 188, 1467 (2007).
http://dx.doi.org/10.1016/j.amc.2006.11.013
11.
11. M. L. Wang and X. Z. Li, Chaos, Solitons and Fract. 24, 1257 (2005).
http://dx.doi.org/10.1016/j.chaos.2004.09.044
12.
12. M. A. Abdou, Chaos, Solitons, and Fract. 31, 95 (2007).
http://dx.doi.org/10.1016/j.chaos.2005.09.030
13.
13. S. T. Mohyud-Din, M. A. Noor, K. I. Noor, and M. M. Hosseini, Int. J. Nonlinear Sci. Numer. Simulat 11, 81 (2010).
14.
14. A. A. Soliman and H. A. Abdo, Int. J. Nonlinear Sci. 7, 274 (2009).
15.
15. S. T. Mohyud-Din, A. Yildirim, and S. Sariaydin, Int. J. Numerical Meth. Heat Fluid Flow 21, 272 (2011).
http://dx.doi.org/10.1108/09615531111108459
16.
16. S. T. Mohyud-Din, A. Yildirim, and S. Sariaydin, Int. J. Numerical Meth. Heat Fluid Flow 21, 822 (2011).
http://dx.doi.org/10.1108/09615531111162800
17.
17. J. H. He and X. H. Wu, Chaos, Solitons and Fract. 30, 700 (2006).
http://dx.doi.org/10.1016/j.chaos.2006.03.020
18.
18. H. Naher, F. A. Abdullah, and M. A. Akbar, J. Appl. Math., 14 pages, doi:10.1155/2012/575387.
http://dx.doi.org/10.1155/2012/575387
19.
19. S. T. Mohyud-din, M. A. Noor, and K. I. Noor, J. King Saud Univ. 22, 213 (2010).
http://dx.doi.org/10.1016/j.jksus.2010.04.015
20.
20. H. Naher, F. Abdullah, and M. A. Akbar, Int. J. Phys. Sci. 6, 6706 (2011).
21.
21. W. X. Ma and Z Zhu, Appl. Math. Compu. 218, 11871 (2012).
http://dx.doi.org/10.1016/j.amc.2012.05.049
22.
22. A. M. Wazwaz, Phys. Scr. doi:10.1088/0031-8949/84/03/035010, 2011.
http://dx.doi.org/10.1088/0031-8949/84/03/035010
23.
23. M. Noor, K. Noor, A. Waheed, and E. A. Al-Said, Math. Prob. Engr., 14 pages, doi:10.1155/2011/250184.
http://dx.doi.org/10.1155/2011/250184
24.
24. S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Math. Prob. Engr., 25 pages, doi:10.1155/2009/234849.
http://dx.doi.org/10.1155/2009/234849
25.
25. Z. I. A. Al-Muhiameed and E. A. B. Abdel-Salam, J. Appl. Math., 15 pages, doi:10.1155/2012/365348.
http://dx.doi.org/10.1155/2012/365348
26.
26. S. T. Mohyud-Din, A. Yildirim, and G. Demirli, Int. J. Numerical Meth. Heat Fluid Flow 21, 198 (2011).
http://dx.doi.org/10.1108/09615531111105399
27.
27. T. Bagarti, A. Roy, K. Kundu, and B. N. Dev, AIP Advances 2, 042101 (2012).
http://dx.doi.org/10.1063/1.4757592
28.
28. M. Wang, X. Li, and J. Zhang, Phys. Lett. A 372, 417 (2008).
http://dx.doi.org/10.1016/j.physleta.2007.07.051
29.
29. J. Feng, W. Li, and Q. Wan, Appl. Math. Comput. 217, 5860 (2011).
http://dx.doi.org/10.1016/j.amc.2010.12.071
30.
30. H. Naher, F. A. Abdullah, and M. A. Akbar, Math. Prob. Engr., 11 pages, doi:10.1155/2011/218216.
http://dx.doi.org/10.1155/2011/218216
31.
31. R. Abazari and R. Abazari, Math. Prob. Engr., 11 pages, doi:10.1155/2011/424801.
http://dx.doi.org/10.1155/2011/424801
32.
32. E. M. E. Zayed and K. A. Gepreel, J. Math. Phys. 50, 013502 (2009).
http://dx.doi.org/10.1063/1.3033750
33.
33. J. Zhang, X. Wei, and Y. Lu, Phys. Lett. A 372, 3653 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.02.027
34.
34. J. Zhang, F. Jiang, and X. Zhao, Int. J. Computer Math. 87, 1716 (2010).
http://dx.doi.org/10.1080/00207160802450166
35.
35. Y. S. Hamad, M. Sayed, S. K. Elagan, and E. R. El-Zahar, J. Modern Methods Numerical Math. 2, 32 (2011).
36.
36. H. Naher and F. A. Abdullah, Math. Prob. Engr., 17 pages, doi:10.1155/2012/871724.
http://dx.doi.org/10.1155/2012/871724
37.
37. H. Naher and F. A. Abdullah, J. Appl. Math., 20 pages, doi:10.1155/2012/438928.
http://dx.doi.org/10.1155/2012/438928
38.
38. H. Naher, F. A. Abdullah, and A. Bekir, AIP Advances 2, 042163 (2012).
http://dx.doi.org/10.1063/1.4769751
39.
39. S. Guo, and Y. Zhou, Appl. Math. Compu. 215, 3214 (2010).
http://dx.doi.org/10.1016/j.amc.2009.10.008
40.
40. E. M. E. Zayed and S. Al-Joudi, Math. Prob. Engr., 19 pages, doi:10.1155/2010/768573.
http://dx.doi.org/10.1155/2010/768573
41.
41. E. M. E. Zayed and M. A. El-Malky, Global J. Sci. Frontier Research 11, 68 (2011).
42.
42. M. A. Akbar, N. H. M. Ali, and E. M. E. Zayed, Math. Prob. Engr., 22 pages, doi:10.1155/2012/459879.
http://dx.doi.org/10.1155/2012/459879
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4794947
Loading
/content/aip/journal/adva/3/3/10.1063/1.4794947
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4794947
2013-03-07
2016-12-10

Abstract

In this article, new (G′/G)-expansion method and new generalized (G′/G)-expansion method is proposed to generate more general and abundant new exact traveling wave solutions of nonlinear evolution equations. The novelty and advantages of these methods is exemplified by its implementation to the KdV equation. The results emphasize the power of proposed methods in providing distinct solutions of different physical structures in nonlinear science. Moreover, these methods could be more effectively used to deal with higher dimensional and higher order nonlinear evolution equations which frequently arise in many scientific real time application fields.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4794947.html;jsessionid=oUwFAfjnG02y8R3UVDVkpxDp.x-aip-live-06?itemId=/content/aip/journal/adva/3/3/10.1063/1.4794947&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/3/10.1063/1.4794947&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/3/10.1063/1.4794947'
Right1,Right2,Right3,