Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/3/10.1063/1.4794949
1.
1. R. E. Smalley, Rev. Mod. Phys. 69, 723 (1997).
http://dx.doi.org/10.1103/RevModPhys.69.723
2.
2. A. H. Castro Neto, F. Guinea, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
3.
3. N. H. Shon and T. Ando, J. Phys. Soc. Jpn 67, 2421 (1998).
http://dx.doi.org/10.1143/JPSJ.67.2421
4.
4. T. Ando, Y Zheng and H Suzuura, J. Phys. Soc. Jpn 71,1318 (2002).
http://dx.doi.org/10.1143/JPSJ.71.1318
5.
5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
6.
6. E. McCann and V. I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.086805
7.
7. M. Khantha, N. A. Cordero, L. M. Molina, J. A. Alonso, and L. A. Girifalco, Phys. Rev. B 70, 125422 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.125422
8.
8. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652 (2007).
http://dx.doi.org/10.1038/nmat1967
9.
9. O. Leenaerts, B. Partoens, and F. M. Peeters, Phys. Rev. B 77, 125416 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.125416
10.
10. Z. M. Ao, J. Yang, S. Li, and Q. Jiang, Chem. Phys. Lett. 461, 276 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.07.039
11.
11. M. Chi and Y. Zhao, Com. Mat. Science 46, 1085 (2009).
http://dx.doi.org/10.1016/j.commatsci.2009.05.017
12.
12. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
13.
13. S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Nature Mater. 6, 198 (2007).
http://dx.doi.org/10.1038/nmat1846
14.
14. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 (2008).
http://dx.doi.org/10.1038/nnano.2008.67
15.
15. T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstien, Nano Lett. 8, 173 (2008).
http://dx.doi.org/10.1021/nl072364w
16.
16. S. K. Saha, R. Ch. Chandrakanth, H. R. Krishnamurthy, and U. V. Waghmare, Phys. Rev. B 80, 155414 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.155414
17.
17. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Nature (London) 448, 457 (2007).
http://dx.doi.org/10.1038/nature06016
18.
18. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323, 610 (2009).
http://dx.doi.org/10.1126/science.1167130
19.
19. S. H. Cheng, K. Zou, F. Okino, H. R. Gutierrez, A. Gupta, N. Shen, P. C. Eklund, J. O. Sofo, and J. Zhu, Phys. Rev. B 81, 205435 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205435
20.
20. R. R. Nair, W. C. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H. M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, K. S. Novoselov, A. K. Geim, I. V. Grigorieva, and A. N. Grigorenko, Small 6, 2877 (2010).
http://dx.doi.org/10.1002/smll.201001555
21.
21. J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow, Nano Lett. 10, 3001 (2010).
http://dx.doi.org/10.1021/nl101437p
22.
22. H. Peelaers, A. D. Hernández-Nieves, O. Leenaerts, B. Partoens, and F. M. Peeters, Appl. Phys. Lett. 98, 051914 (2011).
http://dx.doi.org/10.1063/1.3551712
23.
23. A. Bostwick, T. Ohta, T. Seyller, K. Horn, and Eli Rotenberg, Nat. Phys. 3, 36 (2007).
http://dx.doi.org/10.1038/nphys477
24.
24. W. Kohn, Phys. Rev. Lett. 2, 393 (1959).
http://dx.doi.org/10.1103/PhysRevLett.2.393
25.
25. S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson, Phys. Rev. Lett. 93, 185503 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.185503
26.
26. O. Dubay and G. Kresse, Phys. Rev. B 67, 035401 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.035401
27.
27. S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, and F. Mauri, Phys. Rev. B 75, 035427 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035427
28.
28. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano Lett. 7, 238 (2007).
http://dx.doi.org/10.1021/nl061702a
29.
29. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
30.
30. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, Nano Lett. 6, 2667 (2006).
http://dx.doi.org/10.1021/nl061420a
31.
31. J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.166802
32.
32. A. Grüneis, R. Saito, T. Kimura, L. G. Cancado, M. A. Pimenta, A. Jorio, A. G. Souza Filho, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 65, 155405 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.155405
33.
33. H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, Journal of Raman Spectroscopy 40, 1791 (2009).
http://dx.doi.org/10.1002/jrs.2321
34.
34. N. Mounet and N. Marzari, Phys. Rev. B 71, 205214 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205214
35.
35. J. Yan, W. Y. Ruan, and M. Y. Chou, Phys. Rev. B 77, 125401 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.125401
36.
36. K. H. Michel and B. Verberck, Phys. Rev. B 78, 085424 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.085424
37.
37. L. Wirtz and A. Rubio, Solid State Commun. 131, 141 (2004).
http://dx.doi.org/10.1016/j.ssc.2004.04.042
38.
38. J. Jiang, H. Tang, B. Wang, and Z. Su, Phys. Rev. B 77, 235421 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235421
39.
39. D. Farías, A. M. Shikin, K.-H. Rieder, and Y. S. Dedkov, J. Phys.: Condens. Matter 11, 8453 (1999).
http://dx.doi.org/10.1088/0953-8984/11/43/308
40.
40. D. Farías, K.-H. Rieder, A. M. Shikin, V. A. Adamchuk, K. Tanaka, and C. Oshima, Surf. Sci. 454, 437 (2000).
http://dx.doi.org/10.1016/S0039-6028(00)00253-3
41.
41. A. M. Shikin, G. V. Prudnikova, V. K. Adamchuk, F. Moresco, and K.-H. Rieder, Phys. Rev. B 62, 13202 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.13202
42.
42. K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N.R. Rao, Chem. Phys. Lett. 497,70 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.07.091
43.
43. D. M. Duffy and J. A. Blackman, Phys. Rev. B 58 7443 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7443
44.
44. Y. Yagi, T. M. Briere, H. F. M. Sluiter, V. Kumar, A. A. Farajian, and Y. Kawazoe, Phys. Rev. B 69 075414 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.075414
45.
45. D. M. Duffy and J. A. Blackman, Surf. Sci. 415, L1016 (1998).
http://dx.doi.org/10.1016/S0039-6028(98)00543-3
46.
46. Y. Mao, J. Yuan, and J. Zhong, J. Phys.: Condens. Matter 20, 115209 (2008).
http://dx.doi.org/10.1088/0953-8984/20/11/115209
47.
47. S. Baroni, A. D. Corso, S. de Gironcoli, and P. Giannozzi, http://www.pwscf.org.
48.
48. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
49.
49. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
50.
50. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
51.
51. S. Baroni, S. Gironcoli, D. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.515
52.
52. F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 (1970).
http://dx.doi.org/10.1063/1.1674108
53.
53. R. Wong, D. Zhang, W. Sun, Z. Han, and C. Liu, J. Molecular Structure: Theochem 93, 806 (2007).
54.
54. A. Z. Alzahrani and G. P. Srivastava, Braz. J. Phys. 39, 694 (2009).
http://dx.doi.org/10.1590/S0103-97332009000600013
55.
55. Y. H. Ho, J. Y. Wu, Y. H. Chiu, J. Wang, and M. F. Lin, Phil. Trans. R. Soc. A 368, 5445 (2010).
http://dx.doi.org/10.1098/rsta.2010.0209
56.
56. Y. Liu, S. Goolaup, C. Murapaka, W. S. Lew, and S. K. Wong, ACS Nano 4, 7087 (2010).
http://dx.doi.org/10.1021/nn101296x
57.
57. A. Z. AlZahrani, Appl. Sur. Science 257, 807 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.07.069
58.
58. P. Pavone, K. Karch, O. Schütt, W. Windl, D. Strauch, P. Giannozzi, and S. Baroni, Phys. Rev. B 48, 3156 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.3156
59.
59. G. Giovaneeti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van der Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026803
60.
60. E. V. Castro, M. P. López-Sancho, and M. A. H. Vozmediano, Phys. Rev. Lett. 104, 036802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.036802
61.
61. J. Zhong and G. M. Stocks, Phys. Rev. B 75, 033410 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.033410
62.
62. D. Singh, J. Y. Murthy, and T. S. Fisher, J. Appl. Phys. 110, 044317 (2011).
http://dx.doi.org/10.1063/1.3622300
63.
63. J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejón, Phys. Rev. Lett. 92, 075501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.075501
64.
64. Z. Yao, C. L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2941
65.
65. A. Allard and L. Wirtz, Nano Lett. 10, 4335 (2010).
http://dx.doi.org/10.1021/nl101657v
66.
66. C. Attaccalite, L. Wirtz, M. Lazzeri, F. Mauri, and A. Rubio, Nano Lett. 10, 1172 (2010).
http://dx.doi.org/10.1021/nl9034626
67.
67. S. Latil and L. Henrard, Phys. Rev. Lett. 97, 036803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.036803
68.
68. J. Yan, W. Y. Ruan, and M. Y. Chou, Phys. Rev. B 79, 115443 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115443
69.
69. W. Bao, L. Jing, J. Velasco Jr., Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath, and C. N. Lau, Nature Physics 7, 948 (2011).
http://dx.doi.org/10.1038/nphys2103
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4794949
Loading
/content/aip/journal/adva/3/3/10.1063/1.4794949
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4794949
2013-03-07
2016-12-10

Abstract

In the frame work of density functional theoretical calculations, the electronic and lattice dynamical properties of graphene (multilayers and supercell) have been systematically investigated and analyzed using the plane wave pseudopotentials within the generalized gradient approximation and local density approximation functional. We have also studied the functionalization of graphene by adsorption and absorption of transition metals like Al and Ag. We find that the electronic properties exhibit large sensitivity to the number of layers and doping. The Al and Ag doped graphene exhibits peak at Fermi level in the density of states arising from the flat bands near Fermi level. The bonding of metal atoms and graphene leads to a charge transfer between them and consequently shift Fermi level with respect to the conical point at K-point. The adsorption of Ag/Al atoms suggests an effective interaction between the adatoms and graphene layers without disturbing the original graphene structure of lower graphene layers. Compared to single layer graphene, the optical phonon E2g mode and out of plane ZA mode at Γ-point splits in the bi-, tri- and four- layer graphene. We observe a shift for highest optical branch at Dirac K- point. We find that the different derivatives of graphene have different phonon dispersion relations. We demonstrate that there is removal of degeneracy of ZO/ZA modes at K- point with transition metal doping. The highest optical phonon branch becomes flat at Dirac point with doping of transition metals. Our study points that the substituted graphene sheets can have potential applications in ordered-disordered separated quantum films with two to four layers of atoms and new nano devices using graphene.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4794949.html;jsessionid=jjAbwBbzjrXOFstworBb0Sab.x-aip-live-02?itemId=/content/aip/journal/adva/3/3/10.1063/1.4794949&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/3/10.1063/1.4794949&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/3/10.1063/1.4794949'
Right1,Right2,Right3,