Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/3/10.1063/1.4795108
1.
1. A. G. Aberle, Solar Energy Materials and Solar Cells 65, 239 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00099-4
2.
2. C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, and L. A. Verhoef, Solar Energy Materials and Solar Cells 40, 297 (1996).
http://dx.doi.org/10.1016/0927-0248(95)00155-7
3.
3. X. Dai and K. R. McIntosh, in Proc. 35th IEEE PVSC, Proc. 35th IEEE PVSC, 2010, pp. 3205.
4.
4. B. Gorowitz, T. B. Gorczyca, and R. J. Saia, Solid State Technology 28, 197 (1985).
5.
5. Z. Chen, A. Rohatgi, R. O. Bell, and J. P. Kalejs, Applied Physics Letters 65, 2078 (1994).
http://dx.doi.org/10.1063/1.112798
6.
6. A. W. Weeber, H. C. Rieffe, M. J. A. A. Goris, J. Hong, W. M. M. Kessels, M. C. M. van de Sanden, and W. J. Soppe, in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on, 2003, p. 1131.
7.
7. H. F. W. Dekkers, L. Carnel, and G. Beaucarne, Applied Physics Letters 89, 013508 (2006).
http://dx.doi.org/10.1063/1.2219142
8.
8. J. Hong, W. M. M. Kessels, W. J. Soppe, A. W. Weeber, W. M. Arnoldbik, and M. C. M. v. d. Sanden, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, 2123 (2003).
http://dx.doi.org/10.1116/1.1609481
9.
9. T. Lauinger, J. Moschner, A. G. Aberle, and R. Hezel, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 16, 530 (1998).
http://dx.doi.org/10.1116/1.581095
10.
10. H. Mäckel and R. Lüdemann, Journal of Applied Physics 92, 2602 (2002).
http://dx.doi.org/10.1063/1.1495529
11.
11. J. D. Moschner, J. Henze, J. Schmidt, and R. Hezel, Progress in Photovoltaics: Research and Applications 12, 21 (2004).
http://dx.doi.org/10.1002/pip.523
12.
12. J. F. Lelièvre, E. Fourmond, A. Kaminski, O. Palais, D. Ballutaud, and M. Lemiti, Solar Energy Materials and Solar Cells 93, 1281 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.01.023
13.
13. S. D. Gupta, B. Hoex, L. Fen, T. Mueller, and A. G. Aberle, in Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, 2011, p. 001421.
14.
14. J. Schmidt and M. Kerr, Solar Energy Materials and Solar Cells 65, 585 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00145-8
15.
15. Y. Wan, K. R. McIntosh, A. F. Thomson, and A. Cuevas, Photovoltaics, IEEE Journal of PP, 1 (2012).
16.
16. A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, Physical Review B 86, 165202 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165202
17.
17. D. L. Smith, A. S. Alimonda, and F. J. v. Preissig, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 8, 551 (1990).
http://dx.doi.org/10.1116/1.585008
18.
18. W. M. M. Kessels, F. J. H. v. Assche, J. Hong, D. C. Schram, and M. C. M. v. d. Sanden, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 22, 96 (2004).
http://dx.doi.org/10.1116/1.1631294
19.
19. P. J. v. d. Oever, J. H. v. Helden, J. L. v. Hemmen, R. Engeln, D. C. Schram, M. C. M. v. d. Sanden, and W. M. M. Kessels, Journal of Applied Physics 100, 093303 (2006).
http://dx.doi.org/10.1063/1.2358330
20.
20. S. P. Phang and D. Macdonald, Journal of Applied Physics 109, 073521 (2011).
http://dx.doi.org/10.1063/1.3569890
21.
21. R. A. Sinton and A. Cuevas, Applied Physics Letters 69, 2510 (1996).
http://dx.doi.org/10.1063/1.117723
22.
22. F. Giorgis, F. Giuliani, C. F. Pirri, E. Tresso, C. Summonte, R. Rizzoli, R. Galloni, A. Desalvo, and P. Rava, Philosophical Magazine Part B 77, 925 (1998).
http://dx.doi.org/10.1080/13642819808206395
23.
23. M. Cardona, physica status solidi (b) 118, 463 (1983).
http://dx.doi.org/10.1002/pssb.2221180202
24.
24. P. Doshi, G. E. Jellison, and A. Rohatgi, Appl. Opt. 36, 7826 (1997).
http://dx.doi.org/10.1364/AO.36.007826
25.
25. S. Duttagupta, F. Ma, B. Hoex, T. Mueller, and A. G. Aberle, Energy Procedia 15, 78 (2012).
http://dx.doi.org/10.1016/j.egypro.2012.02.009
26.
26. M. H. Kang, K. Ryu, A. Upadhyaya, and A. Rohatgi, (John Wiley and Sons, Ltd.), p. na.
27.
27. A. G. Aberle, T. Lauinger, J. Schmidt, and R. Hezel, Applied Physics Letters 66, 2828 (1995).
http://dx.doi.org/10.1063/1.113443
28.
28. M. J. Kerr and A. Cuevas, Semiconductor Science and Technology 17, 166 (2002).
http://dx.doi.org/10.1088/0268-1242/17/2/314
29.
29. J. R. Elmiger and M. Kunst, Applied Physics Letters 69, 517 (1996).
http://dx.doi.org/10.1063/1.117772
30.
30. G. Turban, Y. Catherine, and B. Grolleau, Thin Solid Films 67, 309 (1980).
http://dx.doi.org/10.1016/0040-6090(80)90464-2
31.
31. L. Martinu and D. Poitras, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 18, 2619 (2000).
http://dx.doi.org/10.1116/1.1314395
32.
32. J. Robertson, Philosophical Magazine Part B 63, 47 (1991).
http://dx.doi.org/10.1080/01418639108224430
33.
33. A. W. Weeber, H. C. Rieffe, I. G. Romijn, W. C. Sinke, and W. J. Soppe, in Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE, 2005, p. 1043.
34.
34. A. Cuevas, C. Florence, T. Jason, M. Helmut, W. Saul, and R. Kristin, in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, 2006, p. 1148.
35.
35. F. Chen, I. Romijn, A. Weeber, J. Tan, B. Hallam, and J. Cotter, in 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007, p. 1053.
36.
36. H. F. W. Dekkers, G. Beaucarne, M. Hiller, H. Charifi, and A. Slaoui, Applied Physics Letters 89, 211914 (2006).
http://dx.doi.org/10.1063/1.2396900
37.
37. L. M. Terman, Solid-State Electronics 5, 285 (1962).
http://dx.doi.org/10.1016/0038-1101(62)90111-9
38.
38. B. Hoex, A. J. M. van Erven, R. C. M. Bosch, W. T. M. Stals, M. D. Bijker, P. J. van den Oever, W. M. M. Kessels, and M. C. M. van de Sanden, Progress in Photovoltaics: Research and Applications 13, 705 (2005).
http://dx.doi.org/10.1002/pip.628
39.
39. D. Macdonald and L. J. Geerligs, Applied Physics Letters 85, 4061 (2004).
http://dx.doi.org/10.1063/1.1812833
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4795108
Loading
/content/aip/journal/adva/3/3/10.1063/1.4795108
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4795108
2013-03-05
2016-10-01

Abstract

In this work, we investigate how the film properties of silicon nitride (SiNx) depend on its deposition conditions when formed by plasma enhanced chemical vapour deposition (PECVD). The examination is conducted with a Roth & Rau AK400 PECVD reactor, where the varied parameters are deposition temperature, pressure, gas flow ratio, total gas flow, microwave plasma power and radio-frequency bias voltage. The films are evaluated by Fourier transform infrared spectroscopy to determine structural properties, by spectrophotometry to determine optical properties, and by capacitance–voltage and photoconductance measurements to determine electronic properties. After reporting on the dependence of SiNx properties on deposition parameters, we determine the optimized deposition conditions that attain low absorption and low recombination. On the basis of SiNx growth models proposed in the literature and of our experimental results, we discuss how each process parameter affects the deposition rate and chemical bond density. We then focus on the effective surface recombination velocity S eff, which is of primary importance to solar cells. We find that for the SiNx prepared in this work, 1) S eff does not correlate universally with the bulk structural and optical properties such as chemical bond densities and refractive index, and 2) S eff depends primarily on the defect density at the SiNx-Si interface rather than the insulator charge. Finally, employing the optimized deposition condition, we achieve a relatively constant and low S eff,UL on low-resistivity (≤1.1 Ωcm) p- and n-type c-Si substrates over a broad range of n = 1.85–4.07. The results of this study demonstrate that the trade-off between optical transmission and surface passivation can be circumvented. Although we focus on photovoltaic applications, this study may be useful for any device for which it is desirable to maximize light transmission and surface passivation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4795108.html;jsessionid=fCGGT8hEXACOGRaynIGwp2Kh.x-aip-live-06?itemId=/content/aip/journal/adva/3/3/10.1063/1.4795108&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/3/10.1063/1.4795108&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/3/10.1063/1.4795108'
Right1,Right2,Right3,