Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/3/10.1063/1.4795140
1.
1. R. Waser and M. Aono, Nature Mater. 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
2.
2. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
3.
3. J. J. Yang, D. Strukov, and D. R. Stewart, Nature Nanotechnol. 8, 13 (2013).
http://dx.doi.org/10.1038/nnano.2012.240
4.
4. T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono, Appl. Phys. Lett. 91, 092110 (2007).
http://dx.doi.org/10.1063/1.2777170
5.
5. K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Nature 433, 47 (2005).
http://dx.doi.org/10.1038/nature03190
6.
6. T. Hasegawa, K. Terabe, T. Sakamoto, and M. Aono, MRS Bull. 34, 929 (2009).
http://dx.doi.org/10.1557/mrs2009.215
7.
7. I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, Nanotechnology 22, 254003 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254003
8.
8. T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono, Nanotechnology 23, 435705 (2012).
http://dx.doi.org/10.1088/0957-4484/23/43/435705
9.
9. M. G. Gao, Y. S. Chen, J. R. Sun, D. S. Shang, L. F. Liu, J. F. Kang, and B. G. Shen, Appl. Phys. Lett. 101, 203502 (2012).
http://dx.doi.org/10.1063/1.4766737
10.
10. P. Shrestha, A. Ochia, K. P. Cheung, J. P. Campbell, H. Braumgart, and G. Harris, Electrochem. Solid-State Lett. 15, H173 (2012).
http://dx.doi.org/10.1149/2.002206esl
11.
11. S. Tapperzhofen, I. Valov, and R. Waser, Nanotechnology 23, 145703 (2012).
http://dx.doi.org/10.1088/0957-4484/23/14/145703
12.
12. A. C. Torrezan, J. P. Strachan, G. Modeiros-Ribeiro, and R. S. Williams, Nanotechnology 22, 485203 (2011).
http://dx.doi.org/10.1088/0957-4484/22/48/485203
13.
13. D. Ielmini, C. Cagli, and F. Nardi, Appl. Phys. Lett. 94, 063511 (2009).
http://dx.doi.org/10.1063/1.3081401
14.
14. J. Shin, J. Park, J. Lee, S. Park, S. Kim, W. Lee, I. Kim, D. Lee, and H. Hwang, IEEE Electron Device Lett. 32, 958 (2011).
http://dx.doi.org/10.1109/LED.2011.2147274
15.
15. M. Noman, A. A. Sharma, Y. M. Lu, M. Skowronski, P. A. Salvador, and J. A. Bain, Appl. Phys. Lett. 102, 023507 (2013).
http://dx.doi.org/10.1063/1.4776693
16.
16. T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology 21, 425205 (2010);
http://dx.doi.org/10.1088/0957-4484/21/42/425205
16.T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology 22, 254013 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254013
17.
17. T. Tsuruoka, K. Terabe, T. Hasegawa, I. Valov, R. Waser, and M. Aono, Adv. Func. Mater. 12, 70 (2012).
http://dx.doi.org/10.1002/adfm.201101846
18.
18. See supplemental material at http://dx.doi.org/10.1063/1.4795140 for the C-V curve and an example of transient current showing that the cell is SET on the leading edge of the SET current. [Supplementary Material]
19.
19. T. Tsuruoka, T. Hasegawa, I. Valov, R. Waser, and M. Aono (in preparation).
20.
20. C. Schindler, G. Staikov, and R. Waser, Appl. Phys. Lett. 94, 072109 (2009).
http://dx.doi.org/10.1063/1.3077310
21.
21. I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, and R. Waser, Nat. Mater. 11, 530 (2012).
http://dx.doi.org/10.1038/nmat3307
22.
22. E. Budevski, G. Staikov, and W. J. Lorenz, Electrochemical Phase Formation and Growth (VCH, Wheinhein, 1996).
23.
23. I. Valov and G. Staikov, J. Solid State Electrochem. 17, 365 (2013).
http://dx.doi.org/10.1007/s10008-012-1890-5
24.
24. R. Soni, D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki, IEEE Trans. Electron Devices 56, 1040 (2009).
25.
25. J. J. O’Dwyer, The Theory of Electronic Conduction and Breakdown in Solid Dielectrics (Oxford, Clarendon, 1973).
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4795140
Loading
/content/aip/journal/adva/3/3/10.1063/1.4795140
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4795140
2013-03-05
2016-12-10

Abstract

The speed of the SET operation of a Cu/Ta2O5/Pt atomic switch from a high-resistance state to a low-resistance state was measured by transient current measurements under the application of a short voltage pulse. The SET time decreased exponentially with increasing pulse amplitude, reaching as low as 1 ns using moderate pulse voltages. This observation shows that oxide-based atomic switches hold potential for fast-switching memory applications. From a comparison with atomistic nucleation theory, Cu nucleation on the Pt electrode was found to be the likely rate-limiting process determining the SET time.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4795140.html;jsessionid=c3BtXmfhK_MNoF_cGERAI4sP.x-aip-live-02?itemId=/content/aip/journal/adva/3/3/10.1063/1.4795140&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/3/10.1063/1.4795140&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/3/10.1063/1.4795140'
Right1,Right2,Right3,