1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Experimental evidences of topological surface states of β-Ag2Te
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/3/10.1063/1.4795735
1.
1. J. E. Moore, Nature (London) 464, 194 (2010).
http://dx.doi.org/10.1038/nature08916
2.
2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.3045
3.
3. X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.1057
4.
4. M. Konig, H. Buhmann, L. W. Molenkamp, T. L. Hughes, C. X. Liu, X. L. Qi, and S. C. Zhang, J. Phys. Soc. Jpn. 77, 031007 (2008).
http://dx.doi.org/10.1143/JPSJ.77.031007
5.
5. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318, 766 (2007).
http://dx.doi.org/10.1126/science.1148047
6.
6. I. Knez, R. R. Du and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.136603
7.
7. J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brune, E. G. Novik, G. B. Astakhov, H. Buhmann, and L. W. Molenkamp, Phys. Rev. Lett. 107, 136803 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.136803
8.
8. C. Brune, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Phys. Rev. Lett. 106, 126803 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.126803
9.
9. Y. Xia, D. Dian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
http://dx.doi.org/10.1038/nphys1274
10.
10. Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 325, 178 (2009).
http://dx.doi.org/10.1126/science.1173034
11.
11. D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Science 323, 919 (2009).
http://dx.doi.org/10.1126/science.1167733
12.
12. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature (London) 460, 1101 (2009).
http://dx.doi.org/10.1038/nature08234
13.
13. J. G. Analytis, J. H. Chu, Y. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and I. R. Fisher, Phys.Rev. B 81, 205407 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205407
14.
14. Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 195208 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.195208
15.
15. J. G. Checkelsky, Y. S. Hor, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 106, 196801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.196801
16.
16. N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, Phys. Rev. B 81, 241301(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.81.241301
17.
17. J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett. 105, 176602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.176602
18.
18. H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, and F. C. Zhang, Phys. Rev. Lett. 106, 166805 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.166805
19.
19. S. Matsuo, T. Koyama, K. Shimamura, T. Arakawa, Y. Nishihara, D. Chiba, K. Kobayashi, T. Ono, C. Z. Chang, K. He, X. C. Ma, and Q. K. Xue, Phys. Rev. B 85, 075440 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.075440
20.
20. J. Wang, A. M. DaSilva, C. Z. Chang, K. He, J. K. Jain, N. Samarth, X. C. Ma, Q. K. Xue, and M. H. W. Chan, Phys. Rev. B 83, 245438 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.245438
21.
21. R. Xu, A. Husmann, T. F. Rosenbaum, M. L. Saboungi, J. E. Enderby, and P. B. Littlewood, Nature (London) 390, 57 (1997).
http://dx.doi.org/10.1038/36306
22.
22. A. Husmann, J. B. Betts, G. S. Boebinger, A. Migliori, T. F. Rosenbaum, and Saboungi M. L. , Nature (London) 417, 421 (2002).
http://dx.doi.org/10.1038/417421a
23.
23. A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.2788
24.
24. M. M. Parish and P. B. Littlewood, Nature (London) 426, 162 (2003).
http://dx.doi.org/10.1038/nature02073
25.
25. J. S. Hu and T. F. Rosenbaum, Nat. Mater. 7, 697700 (2008).
http://dx.doi.org/10.1038/nmat2259
26.
26. W. Zhang, R. Yu, W. X. Feng, Y. G. Yao, H. M. Weng, X. Dai, and Z. Fang, Phys. Rev. Lett. 106, 156808 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.156808
27.
27. V. E. Sackstedar IV, S. Kettemann, X. Dai, Q. S. Wu, and Z. Fang, arXiv:1108.2938v1 (2011).
28.
28. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.13115
29.
29. P. E. Blochl, Phys. Rev. B 50, 1795317979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
30.
30. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
31.
31. D. D. Koelling and B. N. Harmon, J. Phys. C: Solid Stat. Phys. 10, 3107 (1977).
http://dx.doi.org/10.1088/0022-3719/10/16/019
32.
32. A. van der Lee and J. L. de Boer, Acta Cryst. C 49, 14441446 (1993).
http://dx.doi.org/10.1107/S0108270193003294
33.
33. R. Dalven, Phys. Rev. Lett. 16, 311312 (1966).
http://dx.doi.org/10.1103/PhysRevLett.16.311
34.
34. R. Dalven and R. Gill, Phys. Rev. B 159, 645649 (1967).
http://dx.doi.org/10.1103/PhysRev.159.645
35.
35. L. Fu, Phys. Rev. Lett. 103, 266801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.266801
36.
36. J. H. In, Y. D. Yoo, J. G. Kim, K. Y. Seo, H. J. Kim, H. Ihee, S. H. Oh, and B. S. Kim, Nano Lett. 10, 4501 (2010).
http://dx.doi.org/10.1021/nl102350j
37.
37. H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, and Y. Cui, Nat. Mater. 9, 225 (2010).
38.
38. F. X. Xiu, L. He, Y. Wang, L. Cheng, L. T. Chang, M. Lang, G. Huang, X. F. Kou, Y. Zhou, X. W. Jiang, Z. G. Chen, J. Zou, A. Shailos, and K. L. Wang, Nat. Nano. 6, 216 (2011).
http://dx.doi.org/10.1038/nnano.2011.19
39.
39. Z. G. Li, Y. Y. Qin, F. Q. Song, Q. H. Wang, X. F. Wang, B. G. Wang, H. F. Ding, C. van Haesondonck, J. G. Wang, Y. H. Zhang, G. H. Wang, Appl. Phys. Lett. 100, 083107 (2012).
http://dx.doi.org/10.1063/1.3680099
40.
40. Y. Zhang and A. Vishwanath, Phys. Rev. Lett. 105, 206601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.206601
41.
41. J. H. Bardarson, P. W. Brouwer, and J. E. Moore, Phys. Rev. Lett. 105, 156803 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.156803
42.
42. T. Richer, C. Blomers, H. Luth, R. Calarco, M. Indlekofe, M. Marso, and T. Schapers, Nano Lett. 8, 2834 (2008).
http://dx.doi.org/10.1021/nl8014389
43.
43. C. Y. Moon, J. H. Han, H. Lee, and H. J. Choi, Phys. Rev. B 84, 195425 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195425
44.
44. B. Xia, P. Ren, A. Sulaev, P. Liu, S.-Q. Shen, L. Wang, Phys. Rev. B 87, 085442 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.085442
45.
45. V. F. Gantmakher, Electrons and Disorder in Solids (Oxford Science Publications, 2005).
46.
46. S. G. Lee, J. H. In, Y. D. Yoo, Y. G. Jo, Y. C. Park, H. J. Kim, H. C. Koo, J. Kim, B. S. Kim, and K. L. Wang, Nano Lett. 12, 4194 (2012).
http://dx.doi.org/10.1021/nl301763r
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4795735
Loading
/content/aip/journal/adva/3/3/10.1063/1.4795735
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4795735
2013-03-12
2014-07-30

Abstract

We present evidence of topological surface states in β-Ag2Te through first-principles calculations, periodic quantum interference effect and ambipolar electric field effect in single crystalline nanoribbon. Our first-principles calculations show that β-Ag2Te is a topological insulator with a gapless Dirac cone with strong anisotropy. To experimentally probe the topological surface state, we synthesized high quality β-Ag2Te nanoribbons and performed electron transport measurements. The coexistence of pronounced Aharonov-Bohm oscillations and weak Altshuler-Aronov-Spivak oscillations clearly demonstrates coherent electron transport around the perimeter of β-Ag2Te nanoribbon and therefore the existence of topological surface states, which is further supported by the ambipolar electric field effect for devices fabricated by β-Ag2Te nanoribbons. The experimental evidences of topological surface states and the theoretically predicted anisotropic Dirac cone of β-Ag2Te suggest that the material may be a promising candidate of topological insulator for fundamental study and future spintronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4795735.html;jsessionid=s2njy56uphrj.x-aip-live-02?itemId=/content/aip/journal/adva/3/3/10.1063/1.4795735&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Experimental evidences of topological surface states of β-Ag2Te
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4795735
10.1063/1.4795735
SEARCH_EXPAND_ITEM