Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. E. Moore, Nature (London) 464, 194 (2010).
2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
3. X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
4. M. Konig, H. Buhmann, L. W. Molenkamp, T. L. Hughes, C. X. Liu, X. L. Qi, and S. C. Zhang, J. Phys. Soc. Jpn. 77, 031007 (2008).
5. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318, 766 (2007).
6. I. Knez, R. R. Du and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011).
7. J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brune, E. G. Novik, G. B. Astakhov, H. Buhmann, and L. W. Molenkamp, Phys. Rev. Lett. 107, 136803 (2011).
8. C. Brune, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Phys. Rev. Lett. 106, 126803 (2011).
9. Y. Xia, D. Dian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
10. Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 325, 178 (2009).
11. D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Science 323, 919 (2009).
12. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature (London) 460, 1101 (2009).
13. J. G. Analytis, J. H. Chu, Y. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and I. R. Fisher, Phys.Rev. B 81, 205407 (2010).
14. Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 195208 (2009).
15. J. G. Checkelsky, Y. S. Hor, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 106, 196801 (2011).
16. N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, Phys. Rev. B 81, 241301(R) (2010).
17. J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett. 105, 176602 (2010).
18. H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, and F. C. Zhang, Phys. Rev. Lett. 106, 166805 (2011).
19. S. Matsuo, T. Koyama, K. Shimamura, T. Arakawa, Y. Nishihara, D. Chiba, K. Kobayashi, T. Ono, C. Z. Chang, K. He, X. C. Ma, and Q. K. Xue, Phys. Rev. B 85, 075440 (2012).
20. J. Wang, A. M. DaSilva, C. Z. Chang, K. He, J. K. Jain, N. Samarth, X. C. Ma, Q. K. Xue, and M. H. W. Chan, Phys. Rev. B 83, 245438 (2011).
21. R. Xu, A. Husmann, T. F. Rosenbaum, M. L. Saboungi, J. E. Enderby, and P. B. Littlewood, Nature (London) 390, 57 (1997).
22. A. Husmann, J. B. Betts, G. S. Boebinger, A. Migliori, T. F. Rosenbaum, and Saboungi M. L. , Nature (London) 417, 421 (2002).
23. A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998).
24. M. M. Parish and P. B. Littlewood, Nature (London) 426, 162 (2003).
25. J. S. Hu and T. F. Rosenbaum, Nat. Mater. 7, 697700 (2008).
26. W. Zhang, R. Yu, W. X. Feng, Y. G. Yao, H. M. Weng, X. Dai, and Z. Fang, Phys. Rev. Lett. 106, 156808 (2011).
27. V. E. Sackstedar IV, S. Kettemann, X. Dai, Q. S. Wu, and Z. Fang, arXiv:1108.2938v1 (2011).
28. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
29. P. E. Blochl, Phys. Rev. B 50, 1795317979 (1994).
30. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 38653868 (1996).
31. D. D. Koelling and B. N. Harmon, J. Phys. C: Solid Stat. Phys. 10, 3107 (1977).
32. A. van der Lee and J. L. de Boer, Acta Cryst. C 49, 14441446 (1993).
33. R. Dalven, Phys. Rev. Lett. 16, 311312 (1966).
34. R. Dalven and R. Gill, Phys. Rev. B 159, 645649 (1967).
35. L. Fu, Phys. Rev. Lett. 103, 266801 (2009).
36. J. H. In, Y. D. Yoo, J. G. Kim, K. Y. Seo, H. J. Kim, H. Ihee, S. H. Oh, and B. S. Kim, Nano Lett. 10, 4501 (2010).
37. H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, and Y. Cui, Nat. Mater. 9, 225 (2010).
38. F. X. Xiu, L. He, Y. Wang, L. Cheng, L. T. Chang, M. Lang, G. Huang, X. F. Kou, Y. Zhou, X. W. Jiang, Z. G. Chen, J. Zou, A. Shailos, and K. L. Wang, Nat. Nano. 6, 216 (2011).
39. Z. G. Li, Y. Y. Qin, F. Q. Song, Q. H. Wang, X. F. Wang, B. G. Wang, H. F. Ding, C. van Haesondonck, J. G. Wang, Y. H. Zhang, G. H. Wang, Appl. Phys. Lett. 100, 083107 (2012).
40. Y. Zhang and A. Vishwanath, Phys. Rev. Lett. 105, 206601 (2010).
41. J. H. Bardarson, P. W. Brouwer, and J. E. Moore, Phys. Rev. Lett. 105, 156803 (2010).
42. T. Richer, C. Blomers, H. Luth, R. Calarco, M. Indlekofe, M. Marso, and T. Schapers, Nano Lett. 8, 2834 (2008).
43. C. Y. Moon, J. H. Han, H. Lee, and H. J. Choi, Phys. Rev. B 84, 195425 (2011).
44. B. Xia, P. Ren, A. Sulaev, P. Liu, S.-Q. Shen, L. Wang, Phys. Rev. B 87, 085442 (2013).
45. V. F. Gantmakher, Electrons and Disorder in Solids (Oxford Science Publications, 2005).
46. S. G. Lee, J. H. In, Y. D. Yoo, Y. G. Jo, Y. C. Park, H. J. Kim, H. C. Koo, J. Kim, B. S. Kim, and K. L. Wang, Nano Lett. 12, 4194 (2012).

Data & Media loading...


Article metrics loading...



We present evidence of topological surface states in β-Ag2Te through first-principles calculations, periodic quantum interference effect and ambipolar electric field effect in single crystalline nanoribbon. Our first-principles calculations show that β-Ag2Te is a topological insulator with a gapless Dirac cone with strong anisotropy. To experimentally probe the topological surface state, we synthesized high quality β-Ag2Te nanoribbons and performed electron transport measurements. The coexistence of pronounced Aharonov-Bohm oscillations and weak Altshuler-Aronov-Spivak oscillations clearly demonstrates coherent electron transport around the perimeter of β-Ag2Te nanoribbon and therefore the existence of topological surface states, which is further supported by the ambipolar electric field effect for devices fabricated by β-Ag2Te nanoribbons. The experimental evidences of topological surface states and the theoretically predicted anisotropic Dirac cone of β-Ag2Te suggest that the material may be a promising candidate of topological insulator for fundamental study and future spintronic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd