1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Experimental evidences of topological surface states of β-Ag2Te
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/3/10.1063/1.4795735
1.
1. J. E. Moore, Nature (London) 464, 194 (2010).
http://dx.doi.org/10.1038/nature08916
2.
2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.3045
3.
3. X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.1057
4.
4. M. Konig, H. Buhmann, L. W. Molenkamp, T. L. Hughes, C. X. Liu, X. L. Qi, and S. C. Zhang, J. Phys. Soc. Jpn. 77, 031007 (2008).
http://dx.doi.org/10.1143/JPSJ.77.031007
5.
5. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318, 766 (2007).
http://dx.doi.org/10.1126/science.1148047
6.
6. I. Knez, R. R. Du and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.136603
7.
7. J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brune, E. G. Novik, G. B. Astakhov, H. Buhmann, and L. W. Molenkamp, Phys. Rev. Lett. 107, 136803 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.136803
8.
8. C. Brune, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Phys. Rev. Lett. 106, 126803 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.126803
9.
9. Y. Xia, D. Dian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
http://dx.doi.org/10.1038/nphys1274
10.
10. Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 325, 178 (2009).
http://dx.doi.org/10.1126/science.1173034
11.
11. D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Science 323, 919 (2009).
http://dx.doi.org/10.1126/science.1167733
12.
12. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature (London) 460, 1101 (2009).
http://dx.doi.org/10.1038/nature08234
13.
13. J. G. Analytis, J. H. Chu, Y. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and I. R. Fisher, Phys.Rev. B 81, 205407 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205407
14.
14. Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 195208 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.195208
15.
15. J. G. Checkelsky, Y. S. Hor, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 106, 196801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.196801
16.
16. N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, Phys. Rev. B 81, 241301(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.81.241301
17.
17. J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett. 105, 176602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.176602
18.
18. H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, and F. C. Zhang, Phys. Rev. Lett. 106, 166805 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.166805
19.
19. S. Matsuo, T. Koyama, K. Shimamura, T. Arakawa, Y. Nishihara, D. Chiba, K. Kobayashi, T. Ono, C. Z. Chang, K. He, X. C. Ma, and Q. K. Xue, Phys. Rev. B 85, 075440 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.075440
20.
20. J. Wang, A. M. DaSilva, C. Z. Chang, K. He, J. K. Jain, N. Samarth, X. C. Ma, Q. K. Xue, and M. H. W. Chan, Phys. Rev. B 83, 245438 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.245438
21.
21. R. Xu, A. Husmann, T. F. Rosenbaum, M. L. Saboungi, J. E. Enderby, and P. B. Littlewood, Nature (London) 390, 57 (1997).
http://dx.doi.org/10.1038/36306
22.
22. A. Husmann, J. B. Betts, G. S. Boebinger, A. Migliori, T. F. Rosenbaum, and Saboungi M. L. , Nature (London) 417, 421 (2002).
http://dx.doi.org/10.1038/417421a
23.
23. A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.2788
24.
24. M. M. Parish and P. B. Littlewood, Nature (London) 426, 162 (2003).
http://dx.doi.org/10.1038/nature02073
25.
25. J. S. Hu and T. F. Rosenbaum, Nat. Mater. 7, 697700 (2008).
http://dx.doi.org/10.1038/nmat2259
26.
26. W. Zhang, R. Yu, W. X. Feng, Y. G. Yao, H. M. Weng, X. Dai, and Z. Fang, Phys. Rev. Lett. 106, 156808 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.156808
27.
27. V. E. Sackstedar IV, S. Kettemann, X. Dai, Q. S. Wu, and Z. Fang, arXiv:1108.2938v1 (2011).
28.
28. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.13115
29.
29. P. E. Blochl, Phys. Rev. B 50, 1795317979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
30.
30. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
31.
31. D. D. Koelling and B. N. Harmon, J. Phys. C: Solid Stat. Phys. 10, 3107 (1977).
http://dx.doi.org/10.1088/0022-3719/10/16/019
32.
32. A. van der Lee and J. L. de Boer, Acta Cryst. C 49, 14441446 (1993).
http://dx.doi.org/10.1107/S0108270193003294
33.
33. R. Dalven, Phys. Rev. Lett. 16, 311312 (1966).
http://dx.doi.org/10.1103/PhysRevLett.16.311
34.
34. R. Dalven and R. Gill, Phys. Rev. B 159, 645649 (1967).
http://dx.doi.org/10.1103/PhysRev.159.645
35.
35. L. Fu, Phys. Rev. Lett. 103, 266801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.266801
36.
36. J. H. In, Y. D. Yoo, J. G. Kim, K. Y. Seo, H. J. Kim, H. Ihee, S. H. Oh, and B. S. Kim, Nano Lett. 10, 4501 (2010).
http://dx.doi.org/10.1021/nl102350j
37.
37. H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, and Y. Cui, Nat. Mater. 9, 225 (2010).
38.
38. F. X. Xiu, L. He, Y. Wang, L. Cheng, L. T. Chang, M. Lang, G. Huang, X. F. Kou, Y. Zhou, X. W. Jiang, Z. G. Chen, J. Zou, A. Shailos, and K. L. Wang, Nat. Nano. 6, 216 (2011).
http://dx.doi.org/10.1038/nnano.2011.19
39.
39. Z. G. Li, Y. Y. Qin, F. Q. Song, Q. H. Wang, X. F. Wang, B. G. Wang, H. F. Ding, C. van Haesondonck, J. G. Wang, Y. H. Zhang, G. H. Wang, Appl. Phys. Lett. 100, 083107 (2012).
http://dx.doi.org/10.1063/1.3680099
40.
40. Y. Zhang and A. Vishwanath, Phys. Rev. Lett. 105, 206601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.206601
41.
41. J. H. Bardarson, P. W. Brouwer, and J. E. Moore, Phys. Rev. Lett. 105, 156803 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.156803
42.
42. T. Richer, C. Blomers, H. Luth, R. Calarco, M. Indlekofe, M. Marso, and T. Schapers, Nano Lett. 8, 2834 (2008).
http://dx.doi.org/10.1021/nl8014389
43.
43. C. Y. Moon, J. H. Han, H. Lee, and H. J. Choi, Phys. Rev. B 84, 195425 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195425
44.
44. B. Xia, P. Ren, A. Sulaev, P. Liu, S.-Q. Shen, L. Wang, Phys. Rev. B 87, 085442 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.085442
45.
45. V. F. Gantmakher, Electrons and Disorder in Solids (Oxford Science Publications, 2005).
46.
46. S. G. Lee, J. H. In, Y. D. Yoo, Y. G. Jo, Y. C. Park, H. J. Kim, H. C. Koo, J. Kim, B. S. Kim, and K. L. Wang, Nano Lett. 12, 4194 (2012).
http://dx.doi.org/10.1021/nl301763r
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4795735
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The calculated surface band structure of the β-Ag2Te film with the projected bulk band structure in the background (blue) to the 2D Brillouin zone whose shape is shown in the upper inset. The surface topological states are highlighted by the red lines. The bottom inset shows the expectation values of spin operator (S z) of the surface band in β-Ag2Te along k x and k y directions in momentum space. Three constant-energies, which cut through the surface state below the Dirac point, are plotted. The red (blue) color means the out-of-plane components pointing out-(in-) ward of the plane. The color scale, with blue and red, indicates the intensity of negative and positive values representing the projection S z.

Image of FIG. 2.

Click to view

FIG. 2.

(a) TEM image of an as prepared nanoribbon with the inset showing the corresponding SAED pattern. (b) Transmission electron diffraction pattern simulated based on monoclinic Ag2Te single crystal with cell parameters a = 8.164 Ǻ, b = 4.468 Ǻ, c = 8.977 Ǻ, space group P21/c (ICSD file number: 073402). The electrons are directed to the sample at zone axis [4 5] with energy at 300 KeV. (c) High resolution TEM image of a focused ion beam milled Ag2Te nanoribbon with the inset showing the corresponding fast Fourier transform pattern. (d) EDS mapping for Ag2Te nanoribbon.

Image of FIG. 3.

Click to view

FIG. 3.

(a) EDS spectrum of a Ag2Te nanoribbon. Nanoribbons were grown on the Al2O3 substrates. A small piece from the substrate was cut out for the EDS study. The spectrum was obtained by taking the data at several different points of the nanoribbon for 60 minutes. Al and O peaks in the spectrum are from the Al2O3 substrate. There are no other prominent peaks observed in the EDs study. From the quantitative analysis, we obtain the atomic ratio Ag:Te = 2.02:1 for the nanowire. The inset of (a): Ag/Te molar ratio of nanoribbons obtained in different batch of growth. The molar ratio is about 2.02 for the 5 samples of different batch of growth. There were no samples found with significant deviation from this ratio. (b) AFM image of a Ag2Te nanoribbon. To use freestanding nanoribbons for the AFM, we sonicated nanoribbons grown on the Al2O3 substrates into the IPA solution, subsequently dripping the IPA solution to the SiO2 substrate. Samples used for the AFM scanning vary in the thickness up to 200 nm. No samples were found to have larger thicknesses. The nanoribbons exhibit uniform surfaces. Some large nanoribbons have steps as shown in Fig. 3(b) .

Image of FIG. 4.

Click to view

FIG. 4.

(a) Schematic diagram of four contact devices used in our transport experiments. (b) A scanning electron microscopy image of device in our experiments. The image shows one nanoribbon and six gold contacts on the nanoribbon.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Magnetoresistance of a β-Ag2Te nanoribbon (cross section area: 0.191 width (W) × 0.098 thickness (T) μm2) with an applied magnetic field parallel to the current flowing direction at temperature 2 K, 4 K, 6 K, 8 K, and 10 K, respectively. The curves are vertically displaced for clarity. A clear resistance oscillation with a period of 0.227 Tesla (h/e) is observed, as shown by the dotted lines. The arrows indicate an oscillation with a period of 0.113 Tesla (h/2e). (b) The plot of the 2 K magnetoresistance in (a) in a wider field range from 0 Tesla to 9 Tesla. The arrow indicates the minimums of the oscillations with a period of h/2e. Inset shows the schematic diagram of the measurements. (c) The temperature dependence of the FFT spectra of the quantum oscillations. Locations of h/e and h/2e flux quantization are labeled. (d) The temperature dependence of the FFT amplitude of the h/e flux quantization (the A-B effect). The solid line is the curve of the T−0.5 power law. (e) The ratio of the amplitude of two FFT peaks (A(h/e)/A(h/2e) at different temperatures. The power law fitting gives ∼T−0.38.

Image of FIG. 6.

Click to view

FIG. 6.

(a) VG dependence of resistance at 2 K, 10 K and 50 K, respectively. (b) VG dependence of Conductance at 2 K. It shows quasi-linear behavior near the minimum conductance.

Image of FIG. 7.

Click to view

FIG. 7.

The temperature dependence of normalized resistance (Δρ = ρ (T) − ρ (300 K)) at zero magnetic field of (a) sample A, (b) sample B and (c) sample C, respectively.

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4795735
2013-03-12
2014-04-17

Abstract

We present evidence of topological surface states in β-Ag2Te through first-principles calculations, periodic quantum interference effect and ambipolar electric field effect in single crystalline nanoribbon. Our first-principles calculations show that β-Ag2Te is a topological insulator with a gapless Dirac cone with strong anisotropy. To experimentally probe the topological surface state, we synthesized high quality β-Ag2Te nanoribbons and performed electron transport measurements. The coexistence of pronounced Aharonov-Bohm oscillations and weak Altshuler-Aronov-Spivak oscillations clearly demonstrates coherent electron transport around the perimeter of β-Ag2Te nanoribbon and therefore the existence of topological surface states, which is further supported by the ambipolar electric field effect for devices fabricated by β-Ag2Te nanoribbons. The experimental evidences of topological surface states and the theoretically predicted anisotropic Dirac cone of β-Ag2Te suggest that the material may be a promising candidate of topological insulator for fundamental study and future spintronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4795735.html;jsessionid=d4khvgcf3spm.x-aip-live-02?itemId=/content/aip/journal/adva/3/3/10.1063/1.4795735&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Experimental evidences of topological surface states of β-Ag2Te
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4795735
10.1063/1.4795735
SEARCH_EXPAND_ITEM