Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/3/10.1063/1.4795736
1.
1. G. E. Moor, Electronics 38, 114117 (1965).
2.
2. M. Koentopp, C. Chang, K. Burke, and R. Car, J. Phys., Cond. Matter 20, 08320 (2008).
http://dx.doi.org/10.1088/0953-8984/20/8/083203
3.
3. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fundenberg, J. Hone, P. Kim, and H. L. Stomer, Solid State Commun. 146, 351355 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
4.
4. Ugur Cilingiroglu, Systematic analysis of bipolar and MOS transistors (Artech House, 1993).
5.
5. Yannis Tsividits, Operation and modeling of the MOS transistors (Oxford University Press, 1999).
6.
6. Jonas Fransson, Non-equilibrium nano-physics (Springer, 2010).
7.
7. Leo P. Kadanoff and Gordon Baym, Quantum statistical mechanics (W. A. Benjamin, Inc., 1962).
8.
8. D. Ferry and S. M. Goodnick, Transport in Nanostructures (Cambridge University Press, 1997).
9.
9. S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, 1995).
10.
10. H. Haug and A. P. Jauho, Quantum kinetics in transport and optics of semiconductors, 2th-edition (Springer, 2007).
11.
11. M. Galperin and A. Nitzan, Ann. N. Y. Acad. Sci. 1006, 4867 (2003).
http://dx.doi.org/10.1196/annals.1292.003
12.
12. Nikolai Sergueev, PhD Thesis, Electron-Phonon Interactions in molecular electronic devices (McGill University, 2005).
13.
13. H. Jiang, S. Shao, W. Cai, and P. Zhang, J. Comp. Phys. 227, 65536573 (2008).
http://dx.doi.org/10.1016/j.jcp.2008.03.018
14.
14. H. Simchi, M. Esmaeilzadeh, and M. Heydarisaani, Phys Sol.Stat. b (published online 18-June-2012).
15.
15. S. Shao, W. Cai, and H. Tang, J. Comp. Phys. 219, 733748 (2006).
http://dx.doi.org/10.1016/j.jcp.2006.04.009
16.
16. C. Cheng, Joon-Ho Lee, K. H. Lim, H. Z. Massoud, and Q. H. Liu, J. Comp. Phys. 227, 455471 (2008).
http://dx.doi.org/10.1016/j.jcp.2007.07.028
17.
17. P. Hohenberg and W. Kohn, Phys. Rev., 136, 864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
18.
18. S. Goedecker, M. Tester, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.1703
19.
19. H. Simchi, M. Smaeilzadeh, and M. H. Saani, Opt. Phot. J. 1, 110 (2011).
http://dx.doi.org/10.4236/opj.2011.11001
20.
20. H. Simchi, M. Mehmandoost, Sh. Mohammadnejad, E. Mahmoodzadeh, and M. H. Saani, Far. East. J. Mech. Eng. And Phys. 1, 99109 (2010).
21.
21. Erwin Kreyszig, 10th Edition, Advance mathematical engineering (John Wiley, 2011).
22.
22. Supriyo Datta, Quantum transport: Atom to transistor (Cambridge, 2005).
23.
23. Karl Hess, Advanced theory of semiconductor devices (Prentice-Hall Inc., 1988).
24.
24. Charles P. Enz, A course on many-body theory applied to solid-state physics (World Scientific, 1992).
25.
25. A. D. Becke, Phys. Rev. A 38, 6 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
26.
26. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 2 (1988).
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4795736
Loading
/content/aip/journal/adva/3/3/10.1063/1.4795736
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4795736
2013-03-26
2016-12-11

Abstract

We investigate the effect of electron-electron interaction on voltage distribution, charge distribution and current-voltage curve of two dimensional nano-MOSFETs with dimension equal to 1 × 1 nm2, 3 × 3 nm2, and 6 × 6 nm2 by using non-equilibrium Green function method. It is shown that the turn on voltage increases by decreasing the size of sample because of size quantization. Also we show that for a critical drain-source voltage a negative resistance is seen at current-voltage curve of 1 × 1 nm2 sample because of electron-electron interaction, and in consequence it can tolerate lower gate voltage in real practical applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4795736.html;jsessionid=nk_unNzAnBOLDsSw3Ofvp7Bq.x-aip-live-03?itemId=/content/aip/journal/adva/3/3/10.1063/1.4795736&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/3/10.1063/1.4795736&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/3/10.1063/1.4795736'
Right1,Right2,Right3,