Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/3/10.1063/1.4795854
1.
1. L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers (Birkhauser Bosten, 1997).
2.
2. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (Cambridge Univ. Press, Cambridge, 1990).
3.
3. M. Wadati, H. Sanuki, and K. Konno, Prog. Theor. Phys. 53, 419 (1975).
http://dx.doi.org/10.1143/PTP.53.419
4.
4. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991).
5.
5. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004).
6.
6. X. B. Hu, J. Math. Phys. 39, 4766 (1998).
http://dx.doi.org/10.1063/1.532535
7.
7. M. Wang, Y. Zhou, Z. Li, Phys. Lett. A 216, 67 (1996).
http://dx.doi.org/10.1016/0375-9601(96)00283-6
8.
8. G. Ebadi, N. Yousefzadeh, H. Triki, A. Yildirim, and A. Biswas, Romanian Rep. Phys. 64, 915 (2012).
9.
9. A. H. Bharwy, M. A. Abdelkawy, and Anjan Biswas, Commun. Nonl. Sci. Num. Simul. 18, 915 (2013).
http://dx.doi.org/10.1016/j.cnsns.2012.08.034
10.
10. H. Kumar, A. Malik, F. Chand, and S. C. Mishra, Indian J. Phys. 86, 819 (2012).
http://dx.doi.org/10.1007/s12648-012-0126-y
11.
11. A. Malik, F. Chand, H. Kumar, and S. C. Mishra, Pramana J. Phys. 78, 513 (2012).
http://dx.doi.org/10.1007/s12043-011-0253-6
12.
12. A. Malik, F. Chand, H. Kumar, and S. C. Mishra, Comp. Math. Appl. 64, 2850 (2012).
http://dx.doi.org/10.1016/j.camwa.2012.04.018
13.
13. H. Kumar, A. Malik, and F. Chand, J. Math. Phys. 53, 103704 (2012).
http://dx.doi.org/10.1063/1.4754433
14.
14. Z. Yan, Chaos Solit. Frac. 16, 759 (2003).
http://dx.doi.org/10.1016/S0960-0779(02)00435-6
15.
15. J. Q. Mei and H. Q. Zhang, Chaos Solit. Frac. 20, 771 (2004).
http://dx.doi.org/10.1016/j.chaos.2003.08.007
16.
16. H. Triki, S. Crutcher, A. Yildirim, T. Hayat, O. M. Aldossary, and A. Biswas, Romanian Rep. Phys. 64, 357 (2012).
17.
17. H. Triki, A. Yildirim, T. Hayat, O. M. Aldossary, and A. Biswas, Proc. Romanian Acad. Ser. A 13, 103 (2012).
18.
18. A. G. Johnpillai, A. Yildirim, and A. Biswas, Romanian J. Phys. 57, 545 (2012).
19.
19. A. Biswas, A. Yildirim, T. Hayat, O. M. Aldossary, and R. Sassaman, Proc. Romanian Acad. Ser. A 13, 32 (2012).
20.
20. J. Liu and K. Yang, Chaos, Solit. Fract. 22, 111 (2004).
http://dx.doi.org/10.1016/j.chaos.2003.12.069
21.
21. A. Maccari, J. Math. Phys. 37, 6207 (1996).
http://dx.doi.org/10.1063/1.531773
22.
22. H. Zhao, Chaos, Solit. Fract. 36, 359 (2008).
http://dx.doi.org/10.1016/j.chaos.2006.06.060
23.
23. S. Li-Na and Z. H. Qing, Commun. Theor. Phys. 44, 783 (2005).
http://dx.doi.org/10.1088/6102/44/5/783
24.
24. P. J. Ting and G. L. Xun, Commun. Theor. Phys. 48, 7 (2007).
http://dx.doi.org/10.1088/0253-6102/48/1/002
25.
25. W. H. Huang, Y. L. Liu, and Z. Y. Ma, Commun. Theor. Phys. 47, 397 (2007).
http://dx.doi.org/10.1088/0253-6102/47/3/004
26.
26. W. Wu, J. Syst. Sci. Math. Sci. 4, 207 (1984).
27.
27. H. Triki, A. Yildirim, T. Hayat, O. M. Aldossary, and A. Biswas, Romanian Rep. Phys. 64, 672 (2012).
28.
28. L. Girgis, D. Milovic, S. Konar, A. Yildirim, H. Jafari, and A. Biswas, Romanian Rep. Phys. 64, 663 (2012).
29.
29. K. Nishinari, K. Abe, and J. Satsuma, J. Phys. Soc. Japan 62, 2021 (1993).
http://dx.doi.org/10.1143/JPSJ.62.2021
30.
30. A. Davey and K. Stewartson, Proc. R. Soc. Lond. Ser. A 338, 101 (1974).
http://dx.doi.org/10.1098/rspa.1974.0076
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4795854
Loading
/content/aip/journal/adva/3/3/10.1063/1.4795854
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4795854
2013-03-13
2016-12-03

Abstract

The (2+1)-dimensional Maccari and nonlinear Schrödinger equations are reduced to a nonlinear ordinary differential equation (ODE) by using a simple transformation, various solutions of the nonlinear ODE are obtained by using extended F-expansion and projective Ricatti equation methods. With the aid of solutions of the nonlinear ODE more explicit traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions are found out. It is shown that these methods provides a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4795854.html;jsessionid=W8AqKQFw95WQNSy9bq2xP2gL.x-aip-live-03?itemId=/content/aip/journal/adva/3/3/10.1063/1.4795854&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/3/10.1063/1.4795854&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/3/10.1063/1.4795854'
Right1,Right2,Right3,