Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/3/10.1063/1.4796166
1.
1. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971), 115181.
2.
2. Y. R. Zhang, J. F. Li, B. P. Zhang, and C. Peng, J. Appl. Phys. 103, 074109 (2008).
http://dx.doi.org/10.1063/1.2902805
3.
3. Y. Hiruma, H. Nagata, and T. Takenaka, J. Appl. Phys. 105, 084112 (2009).
http://dx.doi.org/10.1063/1.3115409
4.
4. J. F. Trelcat, S. d’Astorg, C. Courtois, P. Champagne, M. Rguiti, and A. Leriche, J. Eur. Ceram. Soc. 31, 1997 (2011).
http://dx.doi.org/10.1016/j.jeurceramsoc.2011.04.025
5.
5. D. Lin, D. Xiao, J. Zhu, and P. Yu, J. Eur. Ceram. Soc. 26, 3247 (2006).
http://dx.doi.org/10.1016/j.jeurceramsoc.2005.09.038
6.
6. E. Aksel, P. Jakes, E. Erdem, D. M. Smyth, A. Ozarowski, J. V. Tol, J. L. Jones, and R. A. Eich, J. Am. Ceram. Soc. 94, 1363 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2010.04249.x
7.
7. H. Simons, J. Daniels, W. Jo, R. Dittmer, A. Studer, M. Avdeev, J. Rödel, and M. Hoffman, Appl. Phys. Lett. 98, 082901 (2011).
http://dx.doi.org/10.1063/1.3557049
8.
8. A. Singh and R. Chatterjee, J. Appl. Phys. 109, 024105 (2011).
http://dx.doi.org/10.1063/1.3536634
9.
9. L. Egerton and D. M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959).
http://dx.doi.org/10.1111/j.1151-2916.1959.tb12971.x
10.
10. J. Wu, D. Xiao, Y. Wang, J. Zhu, and P. Yu, J. Appl. Phys. 103, 024102 (2008).
http://dx.doi.org/10.1063/1.2830997
11.
11. Y. Chang, Z. Yang, Y. Hou, Z. Liu, and Z. Wang, Appl. Phy. Lett. 90, 232905 (2007).
http://dx.doi.org/10.1063/1.2746411
12.
12. C. Lei and Z. G. Ye, Appl. Phy. Lett. 93, 042901 (2008).
http://dx.doi.org/10.1063/1.2956410
13.
13. C. F. Buhrer, J. Chem. Soc. 36, 798 (1962).
14.
14. V. V. Ivanova, A. G. Kapyshev, Y. N. Venevtsev, and G. S. Zhdanov, Izv. Akad. Nauk SSSR. 26, 354 (1962).
15.
15. T. Wada, A. Fukui, and Y. Matsuo, Jpn. J. Appl. Phys. 41, Part 1, No. 11B 7025 (2002).
http://dx.doi.org/10.1143/JJAP.41.7025
16.
16. Y. Hou, M. Zhu, L. Hou, J. Liu, J. Tang, H. Wang, and H. Yan, J. Crys. Grow. 273, 500 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2004.09.055
17.
17. Z. F. Li, C. L. Wang, W. L. Zhong, J. C. Li, and M. L. Zhao, J. Appl. Phy. 94, 2548 (2003).
http://dx.doi.org/10.1063/1.1592290
18.
18. Y. Hiruma, R. Aoyagi, H. Nagata, and T. Takenaka, Jpn. J. Appl. Phys. 44, 5040 (2005).
http://dx.doi.org/10.1143/JJAP.44.5040
19.
19. K. T. P. Seifert, W. Jo, and J. Rödel, J. Am. Ceram. Soc. 93, 1392 (2010).
20.
20. A. B. Kounga, S. T. Zhang, W. Jo, T. Granzow, and J. Rödel, Appl. Phys. Lett. 92, 222902 (2008).
http://dx.doi.org/10.1063/1.2938064
21.
21. R. Zuo, X. Fang, and C. Ye, Appl. Phys. Lett. 90, 092904 (2007).
http://dx.doi.org/10.1063/1.2710768
22.
22. A. Sasaki, T. China, Y. Mamiya, and E. Otuski, Jpn. J. Appl. Phys. 38, 5564 (1999).
http://dx.doi.org/10.1143/JJAP.38.5564
23.
23. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li, and Z. Pei, J. Phys. D: Appl. Phys. 41, 115413 (2008).
http://dx.doi.org/10.1088/0022-3727/41/11/115413
24.
24. J. Hao, J. Wang, W. Bai, B. Shen, and J. Zhai, Phys. Status Sol. 6, 451 (2012).
http://dx.doi.org/10.1002/pssr.201206270
25.
25. Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim, and T. G. Park, Appl. Phys. Lett. 96, 202901 (2010).
http://dx.doi.org/10.1063/1.3428580
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4796166
Loading
/content/aip/journal/adva/3/3/10.1063/1.4796166
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4796166
2013-03-15
2016-09-26

Abstract

A new lead free (1−x) Bi0.5K0.5TiO3–(x) K0.5 Na 0.5NbO3 (BKT-KNN) system (0.0 ≤ x ≤ 0.15) with density of 94-97% is reported. Tetragonal structure of BKT-KNN is apparent for 0 ≤ x ≤ 0.06 with 1.02 ≤ (c/a) ≤ 1.012. Compositions with x ≥ 0.15 show orthorhombic structure (like KNN) and x = 0.08 & x = 0.10 are pseudocubic. Addition of KNN by a small amount (up to 4 mole %) is shown to improve piezoelectric properties, keeping the ferroelectric and dielectric values comparable to those of BKT. Optimized properties with d 33 = 129 pC/N, k p = 29%, P max = 35 μC/cm2, P r = 24 μC/cm2, ɛ m = 4600, T m = 370 °C and T d = 260 °C are observed for x = 0.03 sample. In the tetragonal range, a correlation between lattice distortion (c/a), piezoelectric coefficient (d 33 ) and depolarization temperature T d is established. Decrease in c/a seems to result in easy poling by field and easy depoling by temperature, leading to an increase in d 33 but a decrease in T d . A phase diagram for 1-xBKT-xKNN (0 ≤ x ≤ 0.10) is proposed. It is shown that addition of more than 6 mole % of KNN leads to the lowering of T d (where the structure becomes tetragonal to pseudocubic) considerably, resulting into a shift in tetragonal- pseudocubic phase boundary towards lower temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4796166.html;jsessionid=zEOGXFgQSO26LRsG2v2TIAO5.x-aip-live-03?itemId=/content/aip/journal/adva/3/3/10.1063/1.4796166&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/3/10.1063/1.4796166&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/3/10.1063/1.4796166'
Right1,Right2,Right3,