Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/3/10.1063/1.4796167
1.
1. C. M. Bender, and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998);
http://dx.doi.org/10.1103/PhysRevLett.80.5243
1.C. M. Bender, S. Boettcher, and P. N. Meisinger, J. Math. Phys. 40, 2201 (1999).
http://dx.doi.org/10.1063/1.532860
2.
2. C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89, 270401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.270401
3.
3. C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
http://dx.doi.org/10.1088/0034-4885/70/6/R03
4.
4. A. Mostafazadeh, J. Math. Phys. 43, 205 (2002);
http://dx.doi.org/10.1063/1.1418246
4.A. Mostafazadeh, J. Math. Phys. 43, 2814 (2002);
http://dx.doi.org/10.1063/1.1461427
4.A. Mostafazadeh, J. Math. Phys. 43, 3944 (2002)
http://dx.doi.org/10.1063/1.1489072
5.
5. S. R. Jain, Czech J. Phys. 56, 1021 (2006).
http://dx.doi.org/10.1007/s10582-006-0397-7
6.
6. S. C. L. Srivastava and S. R. Jain, Fortschr. Phys. 61, 00107 (2012).
7.
7. J. Ginibre, J. Math. Phys. 6, 440 (1965).
http://dx.doi.org/10.1063/1.1704292
8.
8. E. P. Wigner, Ann. Math. 68, 325 (1958).
http://dx.doi.org/10.2307/1970008
9.
9. F. J. Dyson, J. Math. Phys. 3, 1199 (1962).
http://dx.doi.org/10.1063/1.1703863
10.
10. T. Baker and P. Forrester, Commun. Math. Phys. 188, 175 (1997).
http://dx.doi.org/10.1007/s002200050161
11.
11. I. Dumitriu and A. Edelman, J. Math. Phys. 43, 5830 (2002).
http://dx.doi.org/10.1063/1.1507823
12.
12. M. L. Mehta, Random Matrices, Third Edition (Academic Press, London, 2004).
13.
13. Y. V. Fyodorov and H.-J. Sommers, J. Phys. A: Math. Gen. 36, 3303 (2003).
http://dx.doi.org/10.1088/0305-4470/36/12/326
14.
14. O. Bohigas and M. P. Pato, Phys. Rev. E 61, 1899 (2012).
15.
15. J. Ramirez, B. Rider, and B. Virág, J. Amer. Math. Soc. 24, 919 (2011).
http://dx.doi.org/10.1090/S0894-0347-2011-00703-0
16.
16. B. Valkó and B. Virág, Annals of Probability 38, 1263 (2010).
http://dx.doi.org/10.1214/09-AOP508
17.
17. G. Szegö, Orthogonal Polynomials (Am. Math. Soc., 1939).
18.
18. Z. Ahmed and S. R. Jain, Phys. Rev. E 67, 045106R (2003);
http://dx.doi.org/10.1103/PhysRevE.67.045106
18.Z. Ahmed and S. R. Jain, J. Phys. A 36, 3349 (2003).
http://dx.doi.org/10.1088/0305-4470/36/12/327
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4796167
Loading
/content/aip/journal/adva/3/3/10.1063/1.4796167
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4796167
2013-03-15
2016-10-01

Abstract

By removing the Hermitian condition of the so-called β-ensemble of tridiagonal matrices, an ensemble of non-Hermitian random matrices is constructed whose eigenvalues are all real. It is shown that they belong to the class of pseudo-Hermitian operators. Its statistical properties are investigated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4796167.html;jsessionid=3_VgpfgyQ-qQIJrhSXDzAiLh.x-aip-live-03?itemId=/content/aip/journal/adva/3/3/10.1063/1.4796167&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/3/10.1063/1.4796167&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/3/10.1063/1.4796167'
Right1,Right2,Right3,