Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Fennel, K. H. Meiwes-Broer, J. Tiggesbaumker, P. G. Reinhard, P. M. Dinh, and E. Suraud, Rev. Mod. Phys. 82, 1793 (2010).
2. T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, Nature 398, 489 (1999).
3. J. Zweiback, T. E. Cowan, J. H. Hartley, R. Howell, K. B. Wharton, J. K. Crane, V. P. Yanovsky, G. Hays, R. A. Smith, and T. Ditmire, Phys. Plasmas 9, 3108 (2002).
4. T. Ditmire, R. A. Smith, and M. H. R. Hutchinson, Opt. Lett. 23, 322 (1998).
5. V. Kumarappan, K. Y. Kim, and H. M. Milchberg, Phys. Rev. Lett. 94, 205004 (2005).
6. Guanglong Chen, Xiaotao Geng, Tawfik Walid Mohamed, Hongxia Xu, Yiming Mi, Jaehoon Kim, and Dong Eon Kim, Optics Communications 285, 2627 (2012).
7. Y. Fukuda, A. Ya. Faenov, M. Tampo, T. A. Pikuz, T. Nakamura, M. Kando, Y. Hayashi, A. Yogo, H. Sakaki, T. Kameshima, A. S. Pirozhkov, K. Ogura, M. Mori, T. Zh. Esirkepov, J. Koga, A. S. Boldarev, V. A. Gasilov, A. I. Magunov, T. Yamauchi, R. Kodama, P. R. Bolton, Y. Kato, T. Tajima, H. Daido, and S. V. Bulanov, Phys. Rev. Lett. 103, 165002 (2009).
8. P. M. Nilson, S. P. D. Mangles, L. Willingale, M. C. Kaluza, A. G. R. Thomas, M. Tatarakis, R. J. Clarke, K. L. Lancaster, S. Karsch, J. Schreiber, Z. Najmudin, A. E. Dangor, and K. Krushelnick, New J. Phys. 12, 045014 (2010).
9. F. Dorchies, F. Blasco, C. Bonte, T. Caillaud, C. Fourment, and O. Peyrusse, Phys. Rev. Lett. 100, 205002 (2008).
10. B. Shim, G. Hays, R. Zgadzaj, T. Ditmire, and M. C. Downer, Phys. Rev. Lett. 98, 123902 (2007).
11. T. Gorkhover, M. Adolph, D. Rupp, S. Schorb, S. W. Epp, B. Erk, L. Foucar, R. Hartmann, N. Kimmel, K.-U. Kühnel, D. Rolles, B. Rudek, A. Rudenko, R. Andritschke, A. Aquila, J. D. Bozek, N. Coppola, T. Erke, F. Filsinger, H. Gorke, H. Graafsma, L. Gumprecht, G. Hauser, S. Herrmann, H. Hirsemann, A. Hömke, P. Holl, C. Kaiser, F. Krasniqi, J.-H. Meyer, M. Matysek, M. Messerschmidt, D. Miessner, B. Nilsson, D. Pietschner, G. Potdevin, C. Reich, G. Schaller, C. Schmidt, F. Schopper, C. D. Schröter, J. Schulz, H. Soltau, G. Weidenspointner, I. Schlichting, L. Strüder, J. Ullrich, T. Möller, and C. Bostedt, Phys. Rev. Lett. 108, 245005 (2012).
12. E. W. Becker, K. Bier, and W. Henkes, Z. Phys. 146, 133 (1956);
12.O. F. Hagena and W. Obert, J. Chem. Phys. 56, 1793 (1972);
12.O. F. Hagena, Z. Phys. D: At. Mol. Clusters 4, 291 (1987);
12.O. F. Hagena, Rev. Sci. Instrum. 63, 2374 (1992).
13. O. F. Hagena, Surf. Sci. 106, 101 (1981).
14. G. Scoles, Atomic and Molecular Beam Methods, Volume 1 (Oxford University Press, 1988).
15. A. M. Bush, A. J. Bell, J. G. Frey, and J.-M. Mestdagh, J. Phys. Chem. A 102, 6457 (1998).
16. A. Ramos, J. M. Fernández, G. Tejeda, and S. Montero, Phys. Rev. A 72, 053204 (2005).
17. R. A. Smith, T. Ditmire, and J. W. G. Tisch, Rev. Sci. Instrum. 69, 3798 (1998).
18. K. Y. Kim, V. Kumarappan, and H. M. Michberg, Appl. Phys. Lett. 83, 3210 (2003).
19. F. M. DeArmond, J. Suelzer, and M. F. Masters, J. Appl. Phys. 103, 093509 (2008).
20. F. Dorchies, F. Blasco, T. Caillaud, J. Stevefelt, C. Stenz, A. S. Boldarev, and V. A. Gasilov, Phys. Rev. A 68, 023201 (2003).
21. H. Y. Lu, G. Q. Ni, R. X. Li, and Z. Z. Xu, J. Chem. Phys. 132, 124303 (2010).
22. G. L. Chen, B. Kim, B. Ahn, and D. E. Kim, J. Appl. Phys. 108, 064329 (2010).
23. X. Gao, X. Wang, B. Shim, A. V. Arefiev, R. Korzekwa, and M. C. Downer, Appl. Phys. Lett. 100, 064101 (2012).

Data & Media loading...


Article metrics loading...



This work aims to understand the cluster size deviation from the prediction by an existing scaling law for conical nozzles. The dimensions of cluster jet at different heights above a nozzle along the direction of gas flow are measured. This study indicates that the dimension of cluster jet is underestimated in the existing scaling law and this under-estimation leads to the over-estimation of the equivalent diameter of conical nozzle. Thus the underestimation of the dimension of cluster jet may be one of possible factors responsible for the cluster size deviation (the degree of the deviation depends on details of cluster jet).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd