Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/3/10.1063/1.4796188
1.
1. K. Critchley, B. P. Khanal, M. Grzny, L. Vigderman, S. D. Evans, E. R. Zubarev, and N. A. Kotov, Advanced Materials 22, 2338 (2010).
http://dx.doi.org/10.1002/adma.201000236
2.
2. V. Rodrigues, T. Fuhrer, and D. Ugarte, Phys. Rev. Lett. 85, 4124 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.4124
3.
3. C. Xiang, A. G. Guell, M. A. Brown, J. Y. Kim, J. C. Hemminger, and R. M. Penner, Nano Letters 8, 3017 (2008).
http://dx.doi.org/10.1021/nl8021175
4.
4. D. Azulai, T. Belenkova, H. Gilon, Z. Barkay, and G. Markovich, Nano Letters 9, 4246 (2009).
http://dx.doi.org/10.1021/nl902458j
5.
5. Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, Nano Letters 7, 723 (2007).
http://dx.doi.org/10.1021/nl062964f
6.
6. X. Zhang, H. Liu, J. Tian, Y. Song, and L. Wang, Nano Letters 8, 2653 (2008).
http://dx.doi.org/10.1021/nl0808435
7.
7. F. Patolsky and C. M. Lieber, Materials Today 8, 20 (2005).
http://dx.doi.org/10.1016/S1369-7021(05)00791-1
8.
8. U. Yogeswaran and S.-M. Chen, Sensors 8, 290 (2008).
http://dx.doi.org/10.3390/s8010290
9.
9. Z. Liu and P. C. Searson, The Journal of Physical Chemistry B 110, 4318 (2006).
http://dx.doi.org/10.1021/jp056940t
10.
10. X. Wang and C. S. Ozkan, Nano Letters 8, 398 (2008).
http://dx.doi.org/10.1021/nl071180e
11.
11. S. Huang and Y. Chen, Nano Letters 8, 2829 (2008).
http://dx.doi.org/10.1021/nl801429p
12.
12. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Advanced Materials 15, 353 (2003).
http://dx.doi.org/10.1002/adma.200390087
13.
13. T. Maddanimath, A. Kumar, J. D’Arcy-Gall, P. G. Ganesan, K. Vijayamohanan, and G. Ramanath, Chem. Commun., 1435 (2005).
http://dx.doi.org/10.1039/b414447n
14.
14. G. Ramanath, J. D’Arcy-Gall, T. Maddanimath, A. V. Ellis, P. G. Ganesan, R. Goswami, A. Kumar, and K. Vijayamohanan, Langmuir 20, 5583 (2004).
http://dx.doi.org/10.1021/la0497649
15.
15. H. Ohnishi, Y. Kondo, and K. Takayanagi, Nature 395, 780 (1998).
http://dx.doi.org/10.1038/27399
16.
16. A. I. Yanson, G. R. Bollinger, H. E. van den Brom, N. Agrait, and J. M. van Ruitenbeek, Nature 395, 783 (1998).
http://dx.doi.org/10.1038/27405
17.
17. A. H. Bin Wu and J. J. Boland, Nature Materials 4, 525 (2005).
http://dx.doi.org/10.1038/nmat1403
18.
18. D. Aherne, A. Satti, and D. Fitzmaurice, Nanotechnology 18, 125205 (2007).
http://dx.doi.org/10.1088/0957-4484/18/12/125205
19.
19. Q. Huang, C. M. Lilley, and R. Divan, Nanotechnology 20, 075706 (2009).
http://dx.doi.org/10.1088/0957-4484/20/7/075706
20.
20. A. Halder and N. Ravishankar, Advanced Materials 19, 1854 (2007).
http://dx.doi.org/10.1002/adma.200602325
21.
21. U. Chandni, P. Kundu, A. K. Singh, N. Ravishankar, and A. Ghosh, ACS Nano 5, 8398 (2011).
http://dx.doi.org/10.1021/nn2031935
22.
22. E. Z. da Silva, A. J. R. da Silva, and A. Fazzio, Phys. Rev. Lett. 87, 256102 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.256102
23.
23. K. Gall, J. Diao, and M. L. Dunn, Nano Letters 4, 2431 (2004).
http://dx.doi.org/10.1021/nl048456s
24.
24. B. Hyde, H. Espinosa, and D. Farkas, JOM Journal of the Minerals, Metals and Materials Society 57, 62 (2005).
http://dx.doi.org/10.1007/s11837-005-0118-x
25.
25. V. Rodrigues and D. Ugarte, Phys. Rev. B 63, 073405 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.073405
26.
26. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
27.
27. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
28.
28. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1396
29.
29. G. Kresse and J. Furthmller, Computational Materials Science 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
30.
30. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
31.
31. J. R. Greer and W. D. Nix, Phys. Rev. B 73, 245410 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.245410
32.
32. J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, NewYork, 2001).
33.
33. N. Ashcroft and N. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976).
34.
34. G. K. Madsen and D. J. Singh, Computer Physics Communications 175, 67 (2006).
http://dx.doi.org/10.1016/j.cpc.2006.03.007
35.
35. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature 473, 66 (2011).
http://dx.doi.org/10.1038/nature09996
36.
36. L. L. Boyer, Phys. Rev. B 19, 2824 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.2824
37.
37. C. Wang, Y. Hu, C. M. Lieber, and S. Sun, Journal of the American Chemical Society 130, 8902 (2008).
http://dx.doi.org/10.1021/ja803408f
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4796188
Loading
/content/aip/journal/adva/3/3/10.1063/1.4796188
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4796188
2013-03-15
2016-12-09

Abstract

Using first principles based density functional calculation we study the mechanical, electronic and transport properties of single crystalline gold nanowires. While nanowires with the diameter less than 2 nm retain hexagonal cross-section, the larger diameter wires show a structural smoothening leading to circular cross-section. These structural changes significantly affect the mechanical properties of the wires, however, strength remains comparable to the bulk. The transport calculations reveal that the conductivity of these wires are in good agreement with experiments. The combination of good mechanical, electronic and transport properties make these wires promising as interconnects for nano devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4796188.html;jsessionid=7sRmPl5JtdGE52B4Cn5Tiamw.x-aip-live-03?itemId=/content/aip/journal/adva/3/3/10.1063/1.4796188&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/3/10.1063/1.4796188&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/3/10.1063/1.4796188'
Right1,Right2,Right3,