1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Power transmission and group delay in gain-assisted plasmon-induced transparency
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/3/10.1063/1.4798386
1.
1. S. E. Harris, Physics Today 50, 36 (1997).
http://dx.doi.org/10.1063/1.881806
2.
2. K. J. Boller, A. Imamolu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.2593
3.
3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Reviews of Modern Physics 77, 633 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.633
4.
4. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.123901
5.
5. Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, Opt. Lett. 36, 1482 (2011).
http://dx.doi.org/10.1364/OL.36.001482
6.
6. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, Phys. Rev. Lett. 102, 173902 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.173902
7.
7. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, Phys. Rev. B 80, 195415 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.195415
8.
8. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, Phys. Rev. Lett. 104, 243902 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.243902
9.
9. Z. Han and S. I. Bozhevolnyi, Opt. Express 19, 3251 (2011).
http://dx.doi.org/10.1364/OE.19.003251
10.
10. Y. Huang, C. Min, and G. Veronis, Appl. Phys. Lett. 99, 143117 (2011).
http://dx.doi.org/10.1063/1.3647951
11.
11. X. Piao, S. Yu, and N. Park, Opt. Express 20, 18994 (2012).
http://dx.doi.org/10.1364/OE.20.018994
12.
12. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, Phys. Rev. Lett. 101, 047401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.047401
13.
13. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, Nat. Mater. 8, 758 (2009).
http://dx.doi.org/10.1038/nmat2495
14.
14. Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, Appl. Phys. Lett. 97, 114101 (2010).
http://dx.doi.org/10.1063/1.3488020
15.
15. S. Lal, S. Link, and N. J. Halas, Nat. Photon. 1, 641 (2007).
http://dx.doi.org/10.1038/nphoton.2007.223
16.
16. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, Nat Mater 11, 573 (2012).
http://dx.doi.org/10.1038/nmat3356
17.
17. P. Berini and I. De Leon, Nat. Photon. 6, 16 (2012).
http://dx.doi.org/10.1038/nphoton.2011.285
18.
18. A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, Phys. Rev. B 79, 241104 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.241104
19.
19. C. Fietz and C. M. Soukoulis, Opt. Express 20, 11548 (2012).
http://dx.doi.org/10.1364/OE.20.011548
20.
20. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, Nat. Photon. 2, 351 (2008).
http://dx.doi.org/10.1038/nphoton.2008.82
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4798386
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic of the sub-wavelength structure with two side-coupled resonators. The structure is constructed by two metallic stripes and an asymmetric waveguide with gain-assisted (orange region) dielectric core and metallic substrate. The stripes have same thickness (w) and slightly different lengths (L1, and L2) to realize frequency detuning. Their center-to-center spacing is L, and the thickness of the dielectric core is d. The SPP wave (red curves) propagates along the x direction with transverse magnetic polarization. (b) PIT transmission spectrum and the corresponding magnetic field (|Hz|) near two stripes at the peak and dips.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Phase map in the plane of the gain coefficient (α0) and the frequency detuning (ΔL), calculated by COMSOL. (b) Phase map in the plane of −2β″L and the normalized frequency detuning (Δω/γ0), calculated by coupled mode theory. Note that β″<0 represents gain. In (b), we set γc = γ0, γ = 0.005γ0, where γ0 is a normalization factor. Colors show the value of log10(Tmax), where Tmax is the peak transmittance of the PIT spectra. Green dash-dot curves indicate the Tmax = 1 contour. Blue dashed curves indicate the lasing threshold when the transmission coefficient diverges, obeying same form of functions, Eqs. (1) and (5) , respectively.

Image of FIG. 3.

Click to view

FIG. 3.

PIT transmission spectra (a) in amplification regime, (b) in loss-compensation regime, and (c) without gain. Color curves are for different detunings with the value of ΔL = 4 (red), 2 (blue), and 0 nm (black), respectively. Here, L2 is fixed as 180 nm. Note that the vertical axis of (a) is log scale, indicating that the peak linewidth are much narrower than those in (b) and (c).

Image of FIG. 4.

Click to view

FIG. 4.

(a) Phase map in the plane of −2β″L and the detuning of two resonators (Δω/γ0), calculated by coupled mode theory. Here, we set γc = γ0, γ = 0.005γ0, Φrt = 0.8(ω−ω0)+2π, where, γ0 is a normalization factor. Color in (a) shows the value of dArg(t)/dω, where Arg(.) is the argument of transmission coefficient, and d(.)/dω is derivative at the peak transmittance point in the spectra. (b) Vertical cuts of (a) at Δω/γ0 = 0 (red), 0.04 (green), 0.08 (blue), respectively. (c) and (d) are group delay vs frequency of the structure in FIG. 1 with zero detuning and with gain coefficient of 1100 cm−1 and 1156 cm−1 respectively.

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4798386
2013-03-21
2014-04-17

Abstract

A gain-assisted plasmonic waveguide with two detuned resonators is investigated in the plasmon-induced transparency window. Phase map is employed to study power transmittance and group delay for varying gain coefficients and frequency detunings of the two resonators. The gain coefficient for lasing oscillation condition is analytically shown to vary quadratically with the frequency detuning. In the amplification regime below the lasing threshold, the spectrum implies not only large group delay, but also high transmittance and narrow linewidth. This is in contrast to those in the loss-compensation regime and the passive case in which there always exists a trade-off between the linewidth and the peak transmittance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4798386.html;jsessionid=jdui2x5uc55a.x-aip-live-02?itemId=/content/aip/journal/adva/3/3/10.1063/1.4798386&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Power transmission and group delay in gain-assisted plasmon-induced transparency
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4798386
10.1063/1.4798386
SEARCH_EXPAND_ITEM