Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/3/10.1063/1.4799063
1.
1. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
2.
2. R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).
http://dx.doi.org/10.1038/nmat1805
3.
3. S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
http://dx.doi.org/10.1038/nmat1804
4.
4. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
http://dx.doi.org/10.1021/jp000114x
5.
5. C. Tabares-Munoz, J. P. Rivera, A. Monnier, and H. Schmid, Jpn. J. Appl. Phys. 24, 1051 (1985).
6.
6. P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanksi, J. Phys. C: Condens. Matter 13, 1931 (1980).
7.
7. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J.-M. Liu, and Z. G. Liu, Appl. Phys. Lett. 84, 1731 (2004).
http://dx.doi.org/10.1063/1.1667612
8.
8. A. V. ZalesskiÏ, A. A. Frolov, T. A. Khimich, and A. A. Bush, Phys. Solid State 45, 141 (2003).
http://dx.doi.org/10.1134/1.1537425
9.
9. J.-B. Li, G. H. Rao, J. K. Liang, Y. H. Liu, J. Luo, and J. R. Chen, Appl. Phys. Lett. 90, 162513 (2007).
http://dx.doi.org/10.1063/1.2720349
10.
10. M. Azuma, H. Kanda, A. A. Belik, Y. Shimakawa, and M. Takano, J. Mag. Mag. Mat. 310, 1177 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.10.287
11.
11. M. Kumar and K. L. Yadav, J. Phys. C: Condens. Matter 18, L503 (2006).
http://dx.doi.org/10.1088/0953-8984/18/40/L02
12.
12. Q. Xu, S. Zhou, D. Wu, M. Uhlarz, Y. K. Tang, K. Potzger, M. X. Xu, and H. Schmidt, J. Appl. Phys. 107, 093920 (2010).
http://dx.doi.org/10.1063/1.3406150
13.
13. J. Wei, R. l. Haumont, R. Jarrier, P. Berhtet, and B. Dkhil, Appl. Phys. Lett. 96, 102509 (2010).
http://dx.doi.org/10.1063/1.3327885
14.
14. A. Azama, A. Jawad, A. S. Ahmed, M. Chaman, and A. H. Naqvi, J. Alloy and Comp. 509, 2909 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.11.153
15.
15. Q. Xu, H. Zai, D. Wu, T. Qiu, and M. X. Xu, Appl. Phys. Lett. 95, 112510 (2009).
http://dx.doi.org/10.1063/1.3233944
16.
16. D. Kothari, V. R. Reddy, A. Gupta, D. M. Phase, N. Lakshmi, S. K. Deshpande, and A. M. Awasthi, J. Phys. : Condens. Matter 19, 136202 (2007).
http://dx.doi.org/10.1088/0953-8984/19/13/136202
17.
17. I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C: Condens. Matter 15, 4835 (1982).
18.
18. S. Vijayanand, H. S. Potdar, and P. A. Joy, Appl. Phys. Lett. 94, 182507 (2009).
http://dx.doi.org/10.1063/1.3132586
19.
19. X. Yu and X. An, Solid. Stat. Comm. 149, 711 (2009).
http://dx.doi.org/10.1016/j.ssc.2009.02.010
20.
20. S. Vijayanand, M. B. Mahajan, H. S. Potdar, and P. A. Joy, Phys. Rev. B 80, 064423 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.064423
21.
21. A. Jaiswal, R. Das, K. Vivekanand, P. M. Abraham, S. Adyanthaya, and P. Poddar, J. Phys. Chem. C 114, 2108 (2010).
http://dx.doi.org/10.1021/jp910745g
22.
22. R. Guo, L. Fang, W. Dong, F. Zheng, and M. Shen, J. Phys. Chem. C 114, 21390 (2010).
http://dx.doi.org/10.1021/jp104660a
23.
23. F. Z. Qian, J. S. Jiang, S. Z. Guo, D. M. Jiang, and W. G. Zhang, J. Appl. Phys. 106, 084312 (2010).
http://dx.doi.org/10.1063/1.3245390
24.
24. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, and J. –M. Liu, Adv. Mat. 19, 2889 (2007).
http://dx.doi.org/10.1002/adma.200602377
25.
25. Y. –Q. Kang, M. –S. Cao, J. Yuan, and X. –L. Shi, Mat. Lett. 63, 1344 (2009).
http://dx.doi.org/10.1016/j.matlet.2009.03.010
26.
26. X. –L. Yu, Y. Wang, Y. –M. Hu, C. –B. Cao, and H. L. –W. Chanz, J. Am. Ceram. Soc. 92, 3105 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03325.x
27.
27. L. Lutterotti, MAUD, Version 2.33, 2011, (http://www.ing.unitn.it/~maud/).
28.
28. D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, S. Fusil, Phys. Rev. B, 76, 024116 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.024116
29.
29. T. –J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, Nano Lett. 7, 766 (2007).
http://dx.doi.org/10.1021/nl063039w
30.
30. I. Sosnowska, W. Schäfer, W. Kockelmann, K. H. Andersen, and I. O. Troyanchuk, Appl. Phys. A 74, S1040 (2002).
http://dx.doi.org/10.1007/s003390201604
31.
31. S. Chikazumi, K. Ohta, K. Adachi, N. Tsuya, and Y. Ishikawa, Handbook of Magnetic Materials (Asakura-syoten, Tokyo, 1975), p. 63 (in Japanese).
32.
32. E. C. Stoner and E. P. Wohlfarth, Trans. R. Soc. A 240, 599 (1948).
http://dx.doi.org/10.1098/rsta.1948.0007
33.
33. E. C. Stoner and E. P. Wohlfarth, IEEE Trans. Magn. 27, 3475 (1991).
http://dx.doi.org/10.1109/TMAG.1991.1183750
34.
34. D. Kothari, V. R. Reddy, A. Gupta, V. Sathe, A. Banerjee, S. M. Gupta, and A. M. Awasthi, Appl. Phys. Lett. 91, 202505 (2007).
http://dx.doi.org/10.1063/1.2806199
35.
35. V. A. Khomchenko, D. A. Kiselev, M. Kopcewicz, M. Maglione, V. V. Shvartsman, P. Borisov, W. Kleemann, A. M. L. Lopes, Y. G. Pogorelov, J. P. Araujo, R. M. Rubinger, N. A. Sobolev, J. M. Vieira, and A. L. Kholkin, J. Mag. Mag. Mat. 321, 1692 (2009).
http://dx.doi.org/10.1016/j.jmmm.2009.02.008
36.
36. F. Z. Qian, J. S. Jiang, D. M. Jiang, C. M. Wang, and W. G. Zhang, J. Mag. Mag. Mat. 322, 3127 (2010).
http://dx.doi.org/10.1016/j.jmmm.2010.05.045
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4799063
Loading
/content/aip/journal/adva/3/3/10.1063/1.4799063
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4799063
2013-03-27
2016-09-29

Abstract

BiFe1-xCrxO3 (x = 0.0, 0.05 and 0.1) nanoparticles are prepared by the combustion method without using any solvent. All the synthesized nanoparticles are single phase in nature, nearly spherical in shape and crystallize in distorted perovskite structure (space group R3c) with an average crystallite size of the order of 40 nm. The room temperature magnetization observed in BiFeO3 nanoparticles is larger than that in the bulk. Saturation magnetization and coercive field increase with increasing Cr-doping. Strong superexchange interaction between Fe3+ and Cr3+ atoms is likely to give rise to such increase in magnetization with Cr-doping. Mössbauer data of these nanoparticles show ordered magnetic state in which Fe atoms are in 3+ oxidation states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4799063.html;jsessionid=yBeLYCIHLjNoEnS-BsrAxoMj.x-aip-live-02?itemId=/content/aip/journal/adva/3/3/10.1063/1.4799063&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/3/10.1063/1.4799063&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/3/10.1063/1.4799063'
Right1,Right2,Right3,