Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. N. Ramachandran, A. V. Lakshminarayanan, R. Balasubramanium, and G. Tegoni, Biochim. Biophys. Acta 221, 165 (1970);
1.T. Ashida and M. Kakudo, Bull. Chem. Soc. Jpn. 47, 1129 (1974);
1.E. J. Milner-White, L. H. Bell, and P. H. Maccallum, J. Mol. Biol. 228, 725 (1992);
1.P. Chakrabarti and S. Chakrabarti, J. Mol. Biol. 284, 867 (1998).
2. D. Pal and P. Chakrabarti, J. Mol. Biol. 294, 271 (1999).
3. L. Vitagliano, R. Berisio, A. Mastrangelo, L. Mazzarella, and A. Zagari, Protein Sci. 10, 2627 (2001).
4. B. K. Ho, E. A. Coutsias, C. Seok, and K. A. Dill, Protein Sci. 14, 1011 (2005).
5. R. Improta, C. Benzi, and V. Barone, J. Am. Chem. Soc. 123, 12568 (2001);
5.C. L. Jenkins, L. E. Bretscher, I. A. Guzei, and R. T. Raines, J. Am. Chem. Soc. 125, 6422 (2003).
6. K. Kawahara, Y. Nishi, S. Nakamura, S. Uchiyama, Y. Nishiuchi, T. Nakazawa, T. Ohkubo, and Y. Kobayashi, Biochemistry 44, 15812 (2005);
6.M. Schumacher, K. Mizuno, and H. P. Bachinger, J. Biol. Chem. 280, 20397 (2005);
6.R. S. Erdmann and H. Wennemers, Angew. Chem., Int. Ed. 50, 6835 (2011).
7. S. Donnini, G. Groenhof, R. K. Wierenga, and A. H. Juffer, Proteins 64, 700 (2006).
8. D. F. DeTar and N. P. Luthra, J. Am. Chem. Soc. 99, 1232 (1977).
9. V. Madison, Biopolymers 16, 2671 (1977).
10. J. M. Schmidt, R. Bruschweiler, R. R. Ernst, R. L. Dunbrack, D. Joseph, and M. Karplus, J. Am. Chem. Soc. 115, 8747 (1993).
11. Y. K. Kang, J. Phys. Chem. B 108, 5463 (2004).
12. Y. K. Kang, J. Mol. Struct. (THEOCHEM) 675, 37 (2004).
13. M. A. Sahai, T. A. K. Kehoe, J. C. P. Koo, D. H. Setiadi, G. A. Chass, B. Viskolcz, B. Penke, E. F. Pai, and I. G. Csizmadia, J. Phys. Chem. A 109, 2660 (2005).
14. Y. K. Kang, J. Phys. Chem. B 110, 21338 (2006).
15. A. E. Aliev and D. Courtier-Murias, J. Phys. Chem. B 111, 14034 (2007).
16. Y. K. Kang, J. Phys. Chem. B 111, 10550 (2007).
17. A. E. Aliev, S. Bhandal, and D. Courtier-Murias, J. Phys. Chem. A 113, 10858 (2009).
18. D. Cremer and J. A. Pople, J. Am. Chem. Soc. 97, 1354 (1975).
19. C. Altona and M. Sundaralingam, J. Am. Chem. Soc. 94, 8205 (1972).
20. S. T. Rao, E. Westhof, and M. Sundaralingam, Acta Crystallogr. Sect. A 37, 421 (1981).
21. S. Fischer, R. L. Dunbrack, and M. Karplus, J. Am. Chem. Soc. 116, 11931 (1994).
22. D. Hamelberg, T. Shen, and J. A. McCammon, J. Am. Chem. Soc. 127, 1969 (2005);
22.T. Y. Shen, D. Hamelberg, and J. A. McCammon, Phys. Rev. E 73 (2006);
22.D. Hamelberg and A. McCammon, J. Am. Chem. Soc. 131, 147 (2009);
22.S. T. Ladani and D. Hamelberg, J. Phys. Chem. B 116, 10771 (2012);
22.U. Doshi, L. C. McGowan, S. T. Ladani, and D. Hamelberg, Proc. Natl. Acad. Sci. U. S. A. 109, 5699 (2012).
23. U. Doshi and D. Hamelberg, J. Phys. Chem. B 113, 16590 (2009).
24. A. K. Sieradzan, H. A. Scheraga, and A. Liwo, J. Chem. Theory Comput. 8, 1334 (2012).
25. Y. K. Kang, J. Phys. Chem. B 106, 2074 (2002);
25.Y. K. Kang and H. Y. Choi, Biophys. Chem. 111, 135 (2004).
26. Y. K. Kang and B. J. Byun, J. Comput. Chem. 31, 2915 (2010).
27. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B 102, 3586 (1998).
28. A. D. Mackerell, M. Feig, and C. L. Brooks, J. Comput. Chem. 25, 1400 (2004).
29. D. Wu, J. Chem. Phys. 128, 224105 (2008).
30. J. E. Kilpatrick, K. S. Pitzer, and R. Spitzer, J. Am. Chem. Soc. 69, 2483 (1947).
31. S. C. Harvey and M. Prabhakaran, J. Am. Chem. Soc. 108, 6128 (1986).
32. J. D. Dunitz, Tetrahedron 28, 5459 (1972).
33. C. A. G. Haasnoot, J. Am. Chem. Soc. 114, 882 (1992).
34. A. Berces, D. M. Whitfield, and T. Nukada, Tetrahedron 57, 477 (2001).
35. A. D. Hill and P. J. Reilly, J. Chem Inf. Model. 47, 1031 (2007).
36. D. Wu, J. Chem. Phys. 133, 244116 (2010).
37. S. S. Zimmerman, M. S. Pottle, G. Nemethy, and H. A. Scheraga, Macromolecules 10, 1 (1977).
38. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, J. Comput. Chem. 25, 1605 (2004).

Data & Media loading...


Article metrics loading...



Proline has two preferred puckering states, which are often characterized by the pseudorotation phase angle and amplitude. Although proline's five endocyclic torsion angles can be utilized to calculate the phase angle and amplitude, it is not clear if there is any direct correlation between each torsion angle and the proline-puckering pathway. Here we have designed five proline puckering pathways utilizing each torsion angle χ j (j = 1∼5) as the reaction coordinate. By examining the free-energy surfaces of the five puckering pathways, we find they can be categorized into two groups. The χ 2 pathway (χ 2 is about the C β —C γ bond) is especially meaningful in describing proline puckering: it changes linearly with the puckering amplitude and symmetrically with the phase angle. Our results show that this conclusion applies to both trans and cis proline conformations. We have also analyzed the correlations of proline puckering and its backbone torsion angles ϕ and ψ. We show proline has preferred puckering states at the specific regions of ϕ, ψ angles. Interestingly, the shapes of ψ-χ 2 free-energy surfaces are similar among the trans proline in water, cis proline in water and cis proline in the gas phase, but they differ substantially from that of the trans proline in the gas phase. Our calculations are conducted using molecular simulations; we also verify our results using the proline conformations selected from the Protein Data Bank. In addition, we have compared our results with those calculated by the quantum mechanical methods.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd