Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/3/10.1063/1.4799082
1.
1. G. N. Ramachandran, A. V. Lakshminarayanan, R. Balasubramanium, and G. Tegoni, Biochim. Biophys. Acta 221, 165 (1970);
http://dx.doi.org/10.1016/0005-2795(70)90257-6
1.T. Ashida and M. Kakudo, Bull. Chem. Soc. Jpn. 47, 1129 (1974);
http://dx.doi.org/10.1246/bcsj.47.1129
1.E. J. Milner-White, L. H. Bell, and P. H. Maccallum, J. Mol. Biol. 228, 725 (1992);
http://dx.doi.org/10.1016/0022-2836(92)90859-I
1.P. Chakrabarti and S. Chakrabarti, J. Mol. Biol. 284, 867 (1998).
http://dx.doi.org/10.1006/jmbi.1998.2199
2.
2. D. Pal and P. Chakrabarti, J. Mol. Biol. 294, 271 (1999).
http://dx.doi.org/10.1006/jmbi.1999.3217
3.
3. L. Vitagliano, R. Berisio, A. Mastrangelo, L. Mazzarella, and A. Zagari, Protein Sci. 10, 2627 (2001).
http://dx.doi.org/10.1110/ps.ps.26601a
4.
4. B. K. Ho, E. A. Coutsias, C. Seok, and K. A. Dill, Protein Sci. 14, 1011 (2005).
http://dx.doi.org/10.1110/ps.041156905
5.
5. R. Improta, C. Benzi, and V. Barone, J. Am. Chem. Soc. 123, 12568 (2001);
http://dx.doi.org/10.1021/ja010599i
5.C. L. Jenkins, L. E. Bretscher, I. A. Guzei, and R. T. Raines, J. Am. Chem. Soc. 125, 6422 (2003).
http://dx.doi.org/10.1021/ja034015j
6.
6. K. Kawahara, Y. Nishi, S. Nakamura, S. Uchiyama, Y. Nishiuchi, T. Nakazawa, T. Ohkubo, and Y. Kobayashi, Biochemistry 44, 15812 (2005);
http://dx.doi.org/10.1021/bi051619m
6.M. Schumacher, K. Mizuno, and H. P. Bachinger, J. Biol. Chem. 280, 20397 (2005);
http://dx.doi.org/10.1074/jbc.M501453200
6.R. S. Erdmann and H. Wennemers, Angew. Chem., Int. Ed. 50, 6835 (2011).
http://dx.doi.org/10.1002/anie.201008118
7.
7. S. Donnini, G. Groenhof, R. K. Wierenga, and A. H. Juffer, Proteins 64, 700 (2006).
http://dx.doi.org/10.1002/prot.21006
8.
8. D. F. DeTar and N. P. Luthra, J. Am. Chem. Soc. 99, 1232 (1977).
http://dx.doi.org/10.1021/ja00446a040
9.
9. V. Madison, Biopolymers 16, 2671 (1977).
http://dx.doi.org/10.1002/bip.1977.360161208
10.
10. J. M. Schmidt, R. Bruschweiler, R. R. Ernst, R. L. Dunbrack, D. Joseph, and M. Karplus, J. Am. Chem. Soc. 115, 8747 (1993).
http://dx.doi.org/10.1021/ja00072a030
11.
11. Y. K. Kang, J. Phys. Chem. B 108, 5463 (2004).
http://dx.doi.org/10.1021/jp049658f
12.
12. Y. K. Kang, J. Mol. Struct. (THEOCHEM) 675, 37 (2004).
http://dx.doi.org/10.1016/j.theochem.2003.12.031
13.
13. M. A. Sahai, T. A. K. Kehoe, J. C. P. Koo, D. H. Setiadi, G. A. Chass, B. Viskolcz, B. Penke, E. F. Pai, and I. G. Csizmadia, J. Phys. Chem. A 109, 2660 (2005).
http://dx.doi.org/10.1021/jp040594i
14.
14. Y. K. Kang, J. Phys. Chem. B 110, 21338 (2006).
http://dx.doi.org/10.1021/jp052643c
15.
15. A. E. Aliev and D. Courtier-Murias, J. Phys. Chem. B 111, 14034 (2007).
http://dx.doi.org/10.1021/jp076729c
16.
16. Y. K. Kang, J. Phys. Chem. B 111, 10550 (2007).
http://dx.doi.org/10.1021/jp073411b
17.
17. A. E. Aliev, S. Bhandal, and D. Courtier-Murias, J. Phys. Chem. A 113, 10858 (2009).
http://dx.doi.org/10.1021/jp906006w
18.
18. D. Cremer and J. A. Pople, J. Am. Chem. Soc. 97, 1354 (1975).
http://dx.doi.org/10.1021/ja00839a011
19.
19. C. Altona and M. Sundaralingam, J. Am. Chem. Soc. 94, 8205 (1972).
http://dx.doi.org/10.1021/ja00778a043
20.
20. S. T. Rao, E. Westhof, and M. Sundaralingam, Acta Crystallogr. Sect. A 37, 421 (1981).
http://dx.doi.org/10.1107/S0567739481000892
21.
21. S. Fischer, R. L. Dunbrack, and M. Karplus, J. Am. Chem. Soc. 116, 11931 (1994).
http://dx.doi.org/10.1021/ja00105a036
22.
22. D. Hamelberg, T. Shen, and J. A. McCammon, J. Am. Chem. Soc. 127, 1969 (2005);
http://dx.doi.org/10.1021/ja0446707
22.T. Y. Shen, D. Hamelberg, and J. A. McCammon, Phys. Rev. E 73 (2006);
22.D. Hamelberg and A. McCammon, J. Am. Chem. Soc. 131, 147 (2009);
http://dx.doi.org/10.1021/ja806146g
22.S. T. Ladani and D. Hamelberg, J. Phys. Chem. B 116, 10771 (2012);
http://dx.doi.org/10.1021/jp305917c
22.U. Doshi, L. C. McGowan, S. T. Ladani, and D. Hamelberg, Proc. Natl. Acad. Sci. U. S. A. 109, 5699 (2012).
http://dx.doi.org/10.1073/pnas.1117060109
23.
23. U. Doshi and D. Hamelberg, J. Phys. Chem. B 113, 16590 (2009).
http://dx.doi.org/10.1021/jp907388m
24.
24. A. K. Sieradzan, H. A. Scheraga, and A. Liwo, J. Chem. Theory Comput. 8, 1334 (2012).
http://dx.doi.org/10.1021/ct2008439
25.
25. Y. K. Kang, J. Phys. Chem. B 106, 2074 (2002);
http://dx.doi.org/10.1021/jp013608i
25.Y. K. Kang and H. Y. Choi, Biophys. Chem. 111, 135 (2004).
http://dx.doi.org/10.1016/j.bpc.2004.05.006
26.
26. Y. K. Kang and B. J. Byun, J. Comput. Chem. 31, 2915 (2010).
http://dx.doi.org/10.1002/jcc.21587
27.
27. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B 102, 3586 (1998).
http://dx.doi.org/10.1021/jp973084f
28.
28. A. D. Mackerell, M. Feig, and C. L. Brooks, J. Comput. Chem. 25, 1400 (2004).
http://dx.doi.org/10.1002/jcc.20065
29.
29. D. Wu, J. Chem. Phys. 128, 224105 (2008).
http://dx.doi.org/10.1063/1.2936987
30.
30. J. E. Kilpatrick, K. S. Pitzer, and R. Spitzer, J. Am. Chem. Soc. 69, 2483 (1947).
http://dx.doi.org/10.1021/ja01202a069
31.
31. S. C. Harvey and M. Prabhakaran, J. Am. Chem. Soc. 108, 6128 (1986).
http://dx.doi.org/10.1021/ja00280a004
32.
32. J. D. Dunitz, Tetrahedron 28, 5459 (1972).
http://dx.doi.org/10.1016/S0040-4020(01)93869-4
33.
33. C. A. G. Haasnoot, J. Am. Chem. Soc. 114, 882 (1992).
http://dx.doi.org/10.1021/ja00029a013
34.
34. A. Berces, D. M. Whitfield, and T. Nukada, Tetrahedron 57, 477 (2001).
http://dx.doi.org/10.1016/S0040-4020(00)01019-X
35.
35. A. D. Hill and P. J. Reilly, J. Chem Inf. Model. 47, 1031 (2007).
http://dx.doi.org/10.1021/ci600492e
36.
36. D. Wu, J. Chem. Phys. 133, 244116 (2010).
http://dx.doi.org/10.1063/1.3511703
37.
37. S. S. Zimmerman, M. S. Pottle, G. Nemethy, and H. A. Scheraga, Macromolecules 10, 1 (1977).
http://dx.doi.org/10.1021/ma60055a001
38.
38. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, J. Comput. Chem. 25, 1605 (2004).
http://dx.doi.org/10.1002/jcc.20084
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4799082
Loading
/content/aip/journal/adva/3/3/10.1063/1.4799082
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4799082
2013-03-27
2016-12-03

Abstract

Proline has two preferred puckering states, which are often characterized by the pseudorotation phase angle and amplitude. Although proline's five endocyclic torsion angles can be utilized to calculate the phase angle and amplitude, it is not clear if there is any direct correlation between each torsion angle and the proline-puckering pathway. Here we have designed five proline puckering pathways utilizing each torsion angle χ j (j = 1∼5) as the reaction coordinate. By examining the free-energy surfaces of the five puckering pathways, we find they can be categorized into two groups. The χ 2 pathway (χ 2 is about the C β —C γ bond) is especially meaningful in describing proline puckering: it changes linearly with the puckering amplitude and symmetrically with the phase angle. Our results show that this conclusion applies to both trans and cis proline conformations. We have also analyzed the correlations of proline puckering and its backbone torsion angles ϕ and ψ. We show proline has preferred puckering states at the specific regions of ϕ, ψ angles. Interestingly, the shapes of ψ-χ 2 free-energy surfaces are similar among the trans proline in water, cis proline in water and cis proline in the gas phase, but they differ substantially from that of the trans proline in the gas phase. Our calculations are conducted using molecular simulations; we also verify our results using the proline conformations selected from the Protein Data Bank. In addition, we have compared our results with those calculated by the quantum mechanical methods.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4799082.html;jsessionid=vX1J7JedQaTR4XB0ETTND29Z.x-aip-live-03?itemId=/content/aip/journal/adva/3/3/10.1063/1.4799082&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/3/10.1063/1.4799082&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/3/10.1063/1.4799082'
Right1,Right2,Right3,