Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, Nature 465, 329 (2010).
2. H. C. Hamaker, C. W. Ford, J. G. Werthen, G. F. Virshup, N. R. Kaminar, D. L. King, and J. M. Gee, Appl. Phys. Lett. 47, 762 (1985).
3. M. J. Archer, D. C. Law, S. Mesropian, M. Haddad, C. M. Fetzer, A. C. Ackerman, C. Ladous, R. R. King, and H. A. Atwater, Appl. Phys. Lett. 92, 103503 (2008).
4. B. M. Kayes, H. A. Atwater, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005).
5. C. Amano, K. Ando, and M. Yamaguchi, J. Appl. Phys. 63, 2853 (1988).
6. K. W. J. Barnham and G. Duggan, J. Appl. Phys. 67, 3490 (1990).
7. T. Soga, T. Kato, M. Yang, M. Umeno, and T. Jimbo, J. Appl. Phys. 78, 4196 (1995).
8. J. Nishinaga, A. Kawaharazuka, K. Onomitsu, K. H. Ploog, and Y. Horikoshi, Phys. Status Solidi C 9, 330 (2012).
9. A. W. Bett, F. Dimroth, G. Stollwerck, and O. V. Sulima, Appl. Phys. A 69, 119 (1999).
10. C. H. Sun, B. J. Ho, B. Jiang, and P. Jiang, Opt. Lett. 33, 2224 (2008).
11. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, Opt. Express 16, 5290 (2008).
12. A. Alemu, A. Freundlich, N. Badi, C. Boney, A. Bensaoula, Proc. of the 33rd IEEE Photovoltaics Specialists Conf. 2008 (Institute of Electrical and Electronics Engineers, New York), pp. 228231.
13. J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Nano Lett. 9, 279 (2009).
14. S. A. Boden and D. M. Bagnall, Appl. Phys. Lett. 93, 133108 (2008).
15. Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, Appl. Phys. Lett. 94, 263118 (2009).
16. S. Koynov, M. S. Brandt, and M. Stutzmann, Phys. Stat. Sol. 1, R53 (2007).
17. A. R. Parker and H. E. Townley, Nature Nanotech. 2, 347 (2007).
18. E. C. Garnett, and P. D. Yang, J. Am. Chem. Soc. 130, 9224 (2008).
19. J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, M. S. Hyun, J. M. Yang, and J. H. Lee, Nanotechnology 21, 445303 (2010).
20. Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, Appl. Phys. Lett. 91, 221107 (2007).
21. P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, Langmuir 24, 12150 (2008).
22. Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, IEEE J. Sel. Top. Quantum Electron. 15, 1066 (2009).
24. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (John Wiley and Sons. Inc., New York, 2002).
25. Air Mass 1.5 Spectra, American Society for Testing and Materials,
26. G. A. Boutry, Sci. Prog. 36, 587 (1948).
27. S. Koynov, M. S. Brandt, and M. Stutzmann, Appl. Phys. Lett. 88, 203107 (2006).
28. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
29. J. S. Li, H. Y. Yu, S. M. Wong, G. Zhang, X. W. Sun, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett. 95, 033102 (2009).
30. L. Hu and G. Chen, Nano Lett. 7, 3249 (2007).
31. S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, IEEE Electron Dev. Lett. 31, 335 (2010).
32. J. S. Li, H. Y. Yu, Y. L. Li, F. Wang, M. F. Yang, and S. M. Wong, Appl. Phys. Lett. 98, 021905 (2011).
33. X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, IEEE Photonics Journal 3, 489 (2011).
34. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, Optics Express 17, 13747 (2009).
35. W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, Adv. Funct. Mater. 22, 3454 (2012).

Data & Media loading...


Article metrics loading...



Low aspect-ratio nano/micro-hemisphere surface texturing is introduced for improving light management in ultrathin GaAs solar cells. A 200 nm thick film textured by the optimal GaAs nano/micro-hemisphere array with both the hemisphere diameter and array periodicity of 500 nm can achieve >90% light absorption from 1.44 to 2.5 eV, lying in the high photon density energy regime of the solar spectrum for GaAs. The excellent light confinement and low aspect ratio, which is thus convenient for conformal deposition of electrodes for efficient photogenerated carrier collection of the proposed structure will facilitate realization of highly efficient and cost-effective ultrathin GaAs solar cells.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd