1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Design and mechanism of cost-effective and highly efficient ultrathin (< 0.5 μm) GaAs solar cells employing nano/micro-hemisphere surface texturing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/3/10.1063/1.4799731
1.
1. J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, Nature 465, 329 (2010).
http://dx.doi.org/10.1038/nature09054
2.
2. H. C. Hamaker, C. W. Ford, J. G. Werthen, G. F. Virshup, N. R. Kaminar, D. L. King, and J. M. Gee, Appl. Phys. Lett. 47, 762 (1985).
http://dx.doi.org/10.1063/1.96031
3.
3. M. J. Archer, D. C. Law, S. Mesropian, M. Haddad, C. M. Fetzer, A. C. Ackerman, C. Ladous, R. R. King, and H. A. Atwater, Appl. Phys. Lett. 92, 103503 (2008).
http://dx.doi.org/10.1063/1.2887904
4.
4. B. M. Kayes, H. A. Atwater, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005).
http://dx.doi.org/10.1063/1.1901835
5.
5. C. Amano, K. Ando, and M. Yamaguchi, J. Appl. Phys. 63, 2853 (1988).
http://dx.doi.org/10.1063/1.340938
6.
6. K. W. J. Barnham and G. Duggan, J. Appl. Phys. 67, 3490 (1990).
http://dx.doi.org/10.1063/1.345339
7.
7. T. Soga, T. Kato, M. Yang, M. Umeno, and T. Jimbo, J. Appl. Phys. 78, 4196 (1995).
http://dx.doi.org/10.1063/1.359880
8.
8. J. Nishinaga, A. Kawaharazuka, K. Onomitsu, K. H. Ploog, and Y. Horikoshi, Phys. Status Solidi C 9, 330 (2012).
http://dx.doi.org/10.1002/pssc.201100276
9.
9. A. W. Bett, F. Dimroth, G. Stollwerck, and O. V. Sulima, Appl. Phys. A 69, 119 (1999).
http://dx.doi.org/10.1007/s003390050983
10.
10. C. H. Sun, B. J. Ho, B. Jiang, and P. Jiang, Opt. Lett. 33, 2224 (2008).
http://dx.doi.org/10.1364/OL.33.002224
11.
11. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, Opt. Express 16, 5290 (2008).
http://dx.doi.org/10.1364/OE.16.005290
12.
12. A. Alemu, A. Freundlich, N. Badi, C. Boney, A. Bensaoula, Proc. of the 33rd IEEE Photovoltaics Specialists Conf. 2008 (Institute of Electrical and Electronics Engineers, New York), pp. 228231.
13.
13. J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Nano Lett. 9, 279 (2009).
http://dx.doi.org/10.1021/nl802886y
14.
14. S. A. Boden and D. M. Bagnall, Appl. Phys. Lett. 93, 133108 (2008).
http://dx.doi.org/10.1063/1.2993231
15.
15. Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, Appl. Phys. Lett. 94, 263118 (2009).
http://dx.doi.org/10.1063/1.3171930
16.
16. S. Koynov, M. S. Brandt, and M. Stutzmann, Phys. Stat. Sol. 1, R53 (2007).
17.
17. A. R. Parker and H. E. Townley, Nature Nanotech. 2, 347 (2007).
http://dx.doi.org/10.1038/nnano.2007.152
18.
18. E. C. Garnett, and P. D. Yang, J. Am. Chem. Soc. 130, 9224 (2008).
http://dx.doi.org/10.1021/ja8032907
19.
19. J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, M. S. Hyun, J. M. Yang, and J. H. Lee, Nanotechnology 21, 445303 (2010).
http://dx.doi.org/10.1088/0957-4484/21/44/445303
20.
20. Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, Appl. Phys. Lett. 91, 221107 (2007).
http://dx.doi.org/10.1063/1.2816891
21.
21. P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, Langmuir 24, 12150 (2008).
http://dx.doi.org/10.1021/la801100g
22.
22. Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, IEEE J. Sel. Top. Quantum Electron. 15, 1066 (2009).
http://dx.doi.org/10.1109/JSTQE.2009.2017208
23.
24.
24. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (John Wiley and Sons. Inc., New York, 2002).
25.
25. Air Mass 1.5 Spectra, American Society for Testing and Materials, http://rredc.nrel.gov/solar/spectra/am1.5/#1962.
26.
26. G. A. Boutry, Sci. Prog. 36, 587 (1948).
27.
27. S. Koynov, M. S. Brandt, and M. Stutzmann, Appl. Phys. Lett. 88, 203107 (2006).
http://dx.doi.org/10.1063/1.2204573
28.
28. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
29.
29. J. S. Li, H. Y. Yu, S. M. Wong, G. Zhang, X. W. Sun, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett. 95, 033102 (2009).
http://dx.doi.org/10.1063/1.3186046
30.
30. L. Hu and G. Chen, Nano Lett. 7, 3249 (2007).
http://dx.doi.org/10.1021/nl071018b
31.
31. S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, IEEE Electron Dev. Lett. 31, 335 (2010).
http://dx.doi.org/10.1109/LED.2010.2040062
32.
32. J. S. Li, H. Y. Yu, Y. L. Li, F. Wang, M. F. Yang, and S. M. Wong, Appl. Phys. Lett. 98, 021905 (2011).
http://dx.doi.org/10.1063/1.3537810
33.
33. X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, IEEE Photonics Journal 3, 489 (2011).
http://dx.doi.org/10.1109/JPHOT.2011.2150745
34.
34. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, Optics Express 17, 13747 (2009).
http://dx.doi.org/10.1364/OE.17.013747
35.
35. W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, Adv. Funct. Mater. 22, 3454 (2012).
http://dx.doi.org/10.1002/adfm.201200876
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4799731
Loading
/content/aip/journal/adva/3/3/10.1063/1.4799731
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4799731
2013-03-28
2014-09-20

Abstract

Low aspect-ratio nano/micro-hemisphere surface texturing is introduced for improving light management in ultrathin GaAs solar cells. A 200 nm thick film textured by the optimal GaAs nano/micro-hemisphere array with both the hemisphere diameter and array periodicity of 500 nm can achieve >90% light absorption from 1.44 to 2.5 eV, lying in the high photon density energy regime of the solar spectrum for GaAs. The excellent light confinement and low aspect ratio, which is thus convenient for conformal deposition of electrodes for efficient photogenerated carrier collection of the proposed structure will facilitate realization of highly efficient and cost-effective ultrathin GaAs solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4799731.html;jsessionid=klj9mdi03m9v.x-aip-live-06?itemId=/content/aip/journal/adva/3/3/10.1063/1.4799731&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Design and mechanism of cost-effective and highly efficient ultrathin (< 0.5 μm) GaAs solar cells employing nano/micro-hemisphere surface texturing
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4799731
10.1063/1.4799731
SEARCH_EXPAND_ITEM