Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Ionic Liquids in Synthesis, edited by P. Wasserscheid and T. Welton (Wiley VCH: Weinheim, Germany, 2008).
2. J. Dupont and J. D. Scholten, Chem. Soc. Rev. 39, 1780 (2010).
3. E. W. Castner and J. F. Wishart, J. Chem. Phys. 132, 120901 (2010).
4. H. Weingartner, Angew. Chem., Int. Ed. 47, 654 (2008).
5. K. Fumino, T. Peppel, M. Geppert-Rybczynska, D. H. Zaitsau, J. K. Lehmann, S. P. Verevkin, M. Kockerling, and R. Ludwig, Phys. Chem. Chem. Phys. 13, 14064 (2011).
6. A. Swiety-Pospiech, Z. Wojnarowska, J. Pionteck, S. Pawlus, A. Grzybowski, S. Hensel-Bielowka, K. Grzybowska, A. Szulc, and M. Paluch, J. Chem. Phys. 136, 224501 (2012).
7. B. Aoun, A. Goldbach, M. A. Gonzalez, S. Kohara, D. L. Price, and M. –L Saboungi, J. Chem. Phys. 134, 104509 (2011)
8. Z. Chen and R. Nozaki, J. Chem. Phys. 136, 244505 (2012).
9. J. D. Scholten, B. C. Leal, and J. Dupont, ACS Catal. 2, 184 (2012).
10. R. Hayes, N. Borisenko, M. K. Tam, P. C. Howlett, F. Endres, and R. Atkin, J. Phys. Chem. C 115, 6855 (2011).
11. R. Atkins, S. Zein El Abedin, R. Hayes, L. H. S. Gasparotto, N. Borisenko, and F. Endres, J. Phys. Chem. C 113, 13266 (2009).
12. K. Tamura, S. Miyaguchi, K. Sakaue, Y. Nishihata, and J. Mizuki, Electrochem. Commun. 13, 411 (2011).
13. C. Bouvy, G. A. Baker, H. Yin, and S. Dai, Crystal Growth and Design 10, 1319 (2010).
14. M. Gnahm, C. Muller, R. Repanszki, T. Pajkossy, and D. M. Kolb, Phys. Chem. Chem. Phys. 13, 11627 (2011).
15. Y. Lauw, M. D. Horne, T. Rodopoulos, V. Lockett, B. Akgun, W. A. Hamilton, and A. R. J. Nelson, Langmuir 28, 7374 (2012)
16. K. Nakajima, A. Ohno, H. Hashimoto, M. Suzuki, and K. Kimura, J. Chem. Phys. 133, 044702 (2010)
17. M. H. Ghatee, A. R. Zolghadr, F. Moosavi, and Y. Ansari, J. Chem. Phys. 136, 124706 (2012)
18. S. M. Haw and N. J. Mosey, J. Chem. Phys. 134, 014702 (2011).
19. J. C. Lassegues, J. Grondin, D. Cavagnat, and P. Johansson, J. Phys. Chem. A 113, 6419 (2009).
20. A. Wulf, K. Fumino, and R. Ludwig, J. Phys. Chem. A 114, 685 (2010).
21. J. C. Lassegues, J. Grondin, D. Cavagnat, and P. Johansson, J. Phys. Chem. A 114, 687 (2010).
22. Y. Jeon, J. Sung, C. Seo, H. Lim, H. Cheong, M. Kang, B. Moon, Y. Ouchi, and D. Kim, J. Phys. Chem. B 112, 4735 (2008).
23. U. Schroder, J. D. Wadhawan, R. G. Compton, F. Marken, P. A. Z. Suarez, C. S. Consorti, R. F. de Souza, and J. Dupont, New J. Chem. 24, 1009 (2000).
24. J. N. A. C. Lopes and A. A. H. Padua, J. Phys. Chem. B 110, 3330 (2006).
25. Y. Wang and G. A. Voth, J. Phys. Chem. B 110, 18601 (2006).
26. D. Xiao, L. G. Hines, S. Li, R. A. Bartsch, E. L. Quitevis, O. Russina, and A. Triolo, J. Phys. Chem. B 113, 6426 (2009).
27. Y. Umebayashi, J. C. Jiang, K. H. Lin, Y. L. Shan, K. Fujii, S. Seki, S. Ishiguro, S. H. Lin, and H. C. Chang, J. Chem. Phys. 131, 234502 (2009).
28. J. C. Jiang, K. H. Lin, S. C. Li, P. M. Shih, K. C. Hung, S. H. Lin, and H. C. Chang, J. Chem. Phys. 134, 044506 (2011).
29. H. C. Chang, J. C. Jiang, J. C. Su, C. Y. Chang, and S. H. Lin, J. Phys. Chem. A 111, 9201 (2007).
30. Y. Zhao, X. Liu, X. Lu, S. Zhang, J. Wang, H. Wang, G. Guran, R. D. Rogers, L. Su, and H. Li, J. Phys. Chem. B 116, 10876 (2012).
31. L. Su, L. Li, Y. Hu, C. Yuan, C. Shao, and S. Hong, J. Chem. Phys. 130, 184503 (2009).
32. O. Russina, B. Fazio, C. Schmidt, and A. Triolo, Phys. Chem. Chem. Phys. 13, 12067 (2011).
33. H. C. Chang, S. C. Chang, T. C. Hung, J. C. Jiang, J. L. Kuo, and S. H. Lin, J. Phys. Chem. C 115, 23778 (2011)
34. See supplementary material at for Fig. S1, Fig. S2 and Fig. S3. [Supplementary Material]
35. S. Scheiner, T. Kar, and J. Pattanayak, J. Am. Chem. Soc. 124, 13257 (2002).
36. Y. L. Gu, T. Kar, and S. Scheiner, J. Am. Chem. Soc. 121, 9411 (1999).
37. A. Masunov, J. J. Dannenberg, and R. W. Contreras, J. Phys. Chem. A 105, 4737 (2001).
38. X. Li, L. Liu, and H. B. Schlegel, J. Am. Chem. Soc. 124, 9639 (2002).
39. K. Hermansson, J. Phys. Chem. A 106, 4695 (2002).
40. W. Huang, R. Frech, and R. A. Wheeler, J. Phys. Chem. 98, 100 (1994).
41. T. Iwahashi, T. Miyamae, K. Kanai, K. Seki, D. Kim, and Y. Ouchi, J. Phys. Chem. B 112, 11936 (2008).

Data & Media loading...


Article metrics loading...



The interactions between ionic liquid ([EMI][TFS]) and gold surfaces have been investigated via the application of pressures up to ca. 2 GPa. Comparing the spectral features of [EMI][TFS]/gold with those of pure [EMI][TFS], no appreciable changes of C-H bands in the presence of gold powders were observed under ambient pressure. Nevertheless, the imidazolium C-H bands display red shifts in frequency as the [EMI][TFS] / Au mixture was compressed to the pressure above 1.4 GPa and a new alkyl C-H band at ca. 3016 cm−1 was also revealed. These spectral changes, being related to the addition of gold powders and pressure elevation, should be attributed to the local structural changes of C-H groups caused by pressure-enhanced interfacial interactions between [EMI][TFS] and Au. Gold powders tend to induce the changes in hydrogen bonding structures of imidazolium C2-H group under high pressures. The pressure-dependent spectral features in the asymmetric SO3 stretching region display band-narrowing and minor local structural changes induced by the presence of gold particles under high pressures. These observations suggest that Au powders perturb structural equilibrium of C-H groups of cations under high pressures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd