Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/3/10.1063/1.4799756
1.
1. Z. Zhang, C. G. Hu, Y. F. Xiong, R. Yang, and Z. L. Wang, Nanotec. 18, 1 (2007).
2.
2. L. Wang, Y. He, J. Hu, Q. Qi, and T. Zhang, Sens. Act. B: Chem. 153, 460 (2011).
http://dx.doi.org/10.1016/j.snb.2010.11.016
3.
3. S. Banerjee and A. Kumar, J. Appl. Phys. 109, 1 (2011).
4.
4. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annual Review of Materials Science 30, 545 (2000).
http://dx.doi.org/10.1146/annurev.matsci.30.1.545
5.
5. Y. Yin and A. P. Alivisatos, Nature 437, 664 (2005).
http://dx.doi.org/10.1038/nature04165
6.
6. S. A. Mayen-Hernandez, J. Santos-Cruz, G. Torres-Delgado, R. Castanedo-Perez, J. Marquez-Marin, J. G. Mendoza-Alvarez, and O. Zelaya-Angel, Surf. Coating Tech. 200, 3567 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2005.03.024
7.
7. H. Wang, X. X. Zhang, A. P. Huang, H. Y. Xu, M. K. Zhu, B. Wang, H. Yan, and M. Yoshimura, J. Crys. Growth 246, 150 (2002).
http://dx.doi.org/10.1016/S0022-0248(02)01761-X
8.
8. Z. Imran, S. S. Batool, M. Q. Israr, J. R. Sadaf, M. Usman, H. Jamil, M. Y. Javed, M. A. Rafiq, M. M. Hasan, O. Nur, and M. Willander, Ceramics International 38, 3361 (2012).
http://dx.doi.org/10.1016/j.ceramint.2011.12.046
9.
9. M. R. Mohammadi and D. J. Fray, Acta Mater. 57, 1049 (2009).
http://dx.doi.org/10.1016/j.actamat.2008.10.040
10.
10. M. E. Guzhva, V. V. Lemanov, and P. A. Markovin, Physics of the Solid State 43, 2146 (2001).
http://dx.doi.org/10.1134/1.1417196
11.
11. V. Gupta, K. K. Bamzai, P. N. Kotru, and B. M. Wanklyn, Materials Science and Engineering: B 130, 163 (2006).
http://dx.doi.org/10.1016/j.mseb.2006.03.006
12.
12. L. Huang, Z. Chen, J. D. Wilson, S. Banerjee, R. D. Robinson, I. P. Herman, R. Laibowitz, and S. Obrien, Journal of Applied Physics 100, 034316 (2006).
http://dx.doi.org/10.1063/1.2218765
13.
13. N. K. Kim, S. G. Yoon, W. J. Lee, and H. G. Kim, Journal of materials research 12, 1160 (1997).
http://dx.doi.org/10.1557/JMR.1997.0160
14.
14. T. Badapanda, V. Senthil, S. K. Rout, L. S. Cavalcante, A. Z. Simoes, T. P. Sinha, S. Panigrahi, M. M. de Jesus, E. Longo, and J. A. Varela, Current Applied Physics 11, 1282 (2011).
http://dx.doi.org/10.1016/j.cap.2011.03.056
15.
15. A. ur Rahman, M. A. Rafiq, S. Karim, K. Maaz, M. Siddique, and M. M. Hasan, Journal of Physics D: Applied Physics 44, 165404 (2011).
http://dx.doi.org/10.1088/0022-3727/44/16/165404
16.
16. R. Gerhardt, Journal of Physics and Chemistry of Solids 55, 1491 (1994).
http://dx.doi.org/10.1016/0022-3697(94)90575-4
17.
17. J. Liu, C.-G. Duan, W.-G. Yin, W. N. Mei, R. W. Smith, and J. R. Hardy, The Journal of Chemical Physics 119, 2812 (2003).
http://dx.doi.org/10.1063/1.1587685
18.
18. S. K. Barik, R. N. P. Choudhary, and P. K. Mahapatra, Applied Physics a-Materials Science and Processing 88, 217 (2007).
http://dx.doi.org/10.1007/s00339-007-3990-0
19.
19. K. Yamamoto and H. Namikawa, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes and Review Papers 27, 1845 (1988).
http://dx.doi.org/10.1143/JJAP.27.1845
20.
20. D. K. Pradhan, R. N. P. Choudhary, and B. K. Samantaray, Int. J. Electrochem. Sci 3, 597 (2008).
21.
21. A. K. Jonscher, Nature 267, 673 (1977).
http://dx.doi.org/10.1038/267673a0
22.
22. S. Komine and E. Iguchi, Journal of Physics and Chemistry of Solids 68, 1504 (2007).
http://dx.doi.org/10.1016/j.jpcs.2007.03.024
23.
23. I. G. Austin and N. F. Mott, Advances in Physics 18, 41 (1969).
http://dx.doi.org/10.1080/00018736900101267
24.
24. M. Pollak, Philosophical Magazine 23, 519 (1971).
http://dx.doi.org/10.1080/14786437108216402
25.
25. S. R. Elliott, Advances in Physics 36, 135 (1987).
http://dx.doi.org/10.1080/00018738700101971
26.
26. S. R. Elliott, Philosophical Magazine 36, 1291 (1977).
http://dx.doi.org/10.1080/14786437708238517
27.
27. G. E. Pike, Physical Review B 6, 1572 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.1572
28.
28. E. V. Gopalan, K. A. Malini, S. Saravanan, D. S. Kumar, Y. Yoshida, and M. R. Anantharaman, Journal of Physics D: Applied Physics 41, 185005 (2008).
http://dx.doi.org/10.1088/0022-3727/41/18/185005
29.
29. K. Hayat, M. A. Rafiq, S. K. Durrani, and M. M. Hasan, Physica B-Condensed Matter 406, 309 (2011).
http://dx.doi.org/10.1016/j.physb.2010.09.026
30.
30. K. Prasad, K. P. Chandra, S. Bhagat, S. N. Choudhary, and A. R. Kulkarni, Journal of the American Ceramic Society 93, 190 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03394.x
31.
31. K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, and M. M. Hasan, Applied Physics Letters 101, 023114 (2012).
http://dx.doi.org/10.1063/1.4735278
32.
32. S. V. Rathan and G. Govindaraj, Solid State Sciences 12, 730 (2010).
http://dx.doi.org/10.1016/j.solidstatesciences.2010.02.030
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/3/10.1063/1.4799756
Loading
/content/aip/journal/adva/3/3/10.1063/1.4799756
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/3/10.1063/1.4799756
2013-03-28
2016-12-07

Abstract

We investigate electrical and dielectric properties of cadmium titanate (CdTiO3) nanofiber mats prepared by electrospinning. The nanofibers were polycrystalline having diameter ∼50 nm-200 nm, average length ∼100 μm and crystallite size ∼25 nm. Alternating current impedance measurements were carried out from 318 K – 498 K. The frequency of ac signal was varied from 2 – 105 Hz. The complex impedance plots revealed two depressed semicircular arcs indicating the bulk and interface contribution to overall electrical behavior of nanofiber mats. The bulk resistance was found to increase with decrease in temperature exhibiting typical semiconductor like behavior. The modulus analysis shows the non-Debye type conductivity relaxation in nanofiber mats. The ac conductivity spectrum obeyed the Jonscher power law. Analysis of frequency dependent ac conductivity revealed presence of the correlated barrier hopping (CBH) in nanofiber mats over the entire temperature range.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/3/1.4799756.html;jsessionid=-wwXtQJc4anc0jWEE-oxgdT8.x-aip-live-06?itemId=/content/aip/journal/adva/3/3/10.1063/1.4799756&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/3/10.1063/1.4799756&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/3/10.1063/1.4799756'
Right1,Right2,Right3,