Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Z. Zhang, C. G. Hu, Y. F. Xiong, R. Yang, and Z. L. Wang, Nanotec. 18, 1 (2007).
2. L. Wang, Y. He, J. Hu, Q. Qi, and T. Zhang, Sens. Act. B: Chem. 153, 460 (2011).
3. S. Banerjee and A. Kumar, J. Appl. Phys. 109, 1 (2011).
4. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annual Review of Materials Science 30, 545 (2000).
5. Y. Yin and A. P. Alivisatos, Nature 437, 664 (2005).
6. S. A. Mayen-Hernandez, J. Santos-Cruz, G. Torres-Delgado, R. Castanedo-Perez, J. Marquez-Marin, J. G. Mendoza-Alvarez, and O. Zelaya-Angel, Surf. Coating Tech. 200, 3567 (2006).
7. H. Wang, X. X. Zhang, A. P. Huang, H. Y. Xu, M. K. Zhu, B. Wang, H. Yan, and M. Yoshimura, J. Crys. Growth 246, 150 (2002).
8. Z. Imran, S. S. Batool, M. Q. Israr, J. R. Sadaf, M. Usman, H. Jamil, M. Y. Javed, M. A. Rafiq, M. M. Hasan, O. Nur, and M. Willander, Ceramics International 38, 3361 (2012).
9. M. R. Mohammadi and D. J. Fray, Acta Mater. 57, 1049 (2009).
10. M. E. Guzhva, V. V. Lemanov, and P. A. Markovin, Physics of the Solid State 43, 2146 (2001).
11. V. Gupta, K. K. Bamzai, P. N. Kotru, and B. M. Wanklyn, Materials Science and Engineering: B 130, 163 (2006).
12. L. Huang, Z. Chen, J. D. Wilson, S. Banerjee, R. D. Robinson, I. P. Herman, R. Laibowitz, and S. Obrien, Journal of Applied Physics 100, 034316 (2006).
13. N. K. Kim, S. G. Yoon, W. J. Lee, and H. G. Kim, Journal of materials research 12, 1160 (1997).
14. T. Badapanda, V. Senthil, S. K. Rout, L. S. Cavalcante, A. Z. Simoes, T. P. Sinha, S. Panigrahi, M. M. de Jesus, E. Longo, and J. A. Varela, Current Applied Physics 11, 1282 (2011).
15. A. ur Rahman, M. A. Rafiq, S. Karim, K. Maaz, M. Siddique, and M. M. Hasan, Journal of Physics D: Applied Physics 44, 165404 (2011).
16. R. Gerhardt, Journal of Physics and Chemistry of Solids 55, 1491 (1994).
17. J. Liu, C.-G. Duan, W.-G. Yin, W. N. Mei, R. W. Smith, and J. R. Hardy, The Journal of Chemical Physics 119, 2812 (2003).
18. S. K. Barik, R. N. P. Choudhary, and P. K. Mahapatra, Applied Physics a-Materials Science and Processing 88, 217 (2007).
19. K. Yamamoto and H. Namikawa, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes and Review Papers 27, 1845 (1988).
20. D. K. Pradhan, R. N. P. Choudhary, and B. K. Samantaray, Int. J. Electrochem. Sci 3, 597 (2008).
21. A. K. Jonscher, Nature 267, 673 (1977).
22. S. Komine and E. Iguchi, Journal of Physics and Chemistry of Solids 68, 1504 (2007).
23. I. G. Austin and N. F. Mott, Advances in Physics 18, 41 (1969).
24. M. Pollak, Philosophical Magazine 23, 519 (1971).
25. S. R. Elliott, Advances in Physics 36, 135 (1987).
26. S. R. Elliott, Philosophical Magazine 36, 1291 (1977).
27. G. E. Pike, Physical Review B 6, 1572 (1972).
28. E. V. Gopalan, K. A. Malini, S. Saravanan, D. S. Kumar, Y. Yoshida, and M. R. Anantharaman, Journal of Physics D: Applied Physics 41, 185005 (2008).
29. K. Hayat, M. A. Rafiq, S. K. Durrani, and M. M. Hasan, Physica B-Condensed Matter 406, 309 (2011).
30. K. Prasad, K. P. Chandra, S. Bhagat, S. N. Choudhary, and A. R. Kulkarni, Journal of the American Ceramic Society 93, 190 (2009).
31. K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, and M. M. Hasan, Applied Physics Letters 101, 023114 (2012).
32. S. V. Rathan and G. Govindaraj, Solid State Sciences 12, 730 (2010).

Data & Media loading...


Article metrics loading...



We investigate electrical and dielectric properties of cadmium titanate (CdTiO3) nanofiber mats prepared by electrospinning. The nanofibers were polycrystalline having diameter ∼50 nm-200 nm, average length ∼100 μm and crystallite size ∼25 nm. Alternating current impedance measurements were carried out from 318 K – 498 K. The frequency of ac signal was varied from 2 – 105 Hz. The complex impedance plots revealed two depressed semicircular arcs indicating the bulk and interface contribution to overall electrical behavior of nanofiber mats. The bulk resistance was found to increase with decrease in temperature exhibiting typical semiconductor like behavior. The modulus analysis shows the non-Debye type conductivity relaxation in nanofiber mats. The ac conductivity spectrum obeyed the Jonscher power law. Analysis of frequency dependent ac conductivity revealed presence of the correlated barrier hopping (CBH) in nanofiber mats over the entire temperature range.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd