Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. For an extensive review of electronic, optical, and transport phenomena in the systems of reduced dimensions such as quantum wells, quantum wires, quantum dots, and electrically/magnetically modulated 2DES systems, see M. S. Kushwaha, Surf. Sci. Rep. 41, 1 (2001).
2. H. Sakaki, Jpn. J. Appl. Phys. 19, L735 (1980).
3. M. S. Kushwaha, J. Appl. Phys. 109, 106102 (2011); and the references therein.
4. B. Y. K. Hu and S. Das Sarma, Phys. Rev. Lett. 68, 1750 (1992).
5. J. M. Calleja, A. R. Goñi, A. Pinczuk, B. S. Dennis, J. S. Weiner, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 51, 4285 (1995).
6. Q. P. Li, S. Das Sarma, and R. Joynt, Phys. Rev. B 45, 13713 (1992).
7. P. F. Williams and A. N. Bloch, Phys. Rev. B 10, 1097 (1974).
8. M. Apostol, Z. Phys. B 22, 279 (1975).
9. V. B. Campos, O. Hipolito, and R. Lobo, Phys. Stat. Sol. B 81, 657 (1977).
10. W. I. Friesen and B. Bergersen, J. Phys. C 13, 6627 (1980).
11. Y. C. Lee, S. Ullova, and P. S. Lee, J. Phys. C 16, L995 (1983).
12. H. Wagner, H. P. Geserich, R. V. Baltz, and K. Krogman, Solid State Commun. 13, 943 (1973).
13. A. A. Bright, A. F. Garito, and A. J. Heeger, Phys. Rev. B 10, 1328 (1974).
14. P. F. Williams, M. A. Butler, D. L. Rousseau, and A. N. Bloch, Phys. Rev. B 10, 1109 (1974).
15. J. J. Ritsko, D. J. Sandman, A. J. Epstein, P. C. Gibbons, S. E. Schnatterly, and J. Fields, Phys. Rev. Lett. 34, 1330 (1975).
16. S. Das Sarma and W. Y. Lai, Phys. Rev. B 32, 1401 (1985).
17. W. Que and G. Kirczenow, Phys. Rev. B 37, 7153 (1988).
18. A. Gold and A. Ghazali, Phys. Rev. B 41, 7626 (1990).
19. Q. P. Li and S. Das Sarma, Phys. Rev. B 43, 11768 (1991).
20. P. W. Park, A. H. MacDonald, and W. L. Schaich, Phys. Rev. B 46, 12635 (1992).
21. F. A. Reboredo and C. R. Proetto, Phys. Rev. B 50, 15174 (1994).
22. S. Das Sarma, E. H. Hwang, and L. Zheng, Phys. Rev. B 54, 8057 (1996).
23. A. N. Borges, S. A. Leao, and O. Hipolito, Phys. Rev. B 55, 4680 (1997).
24. M. S. Kushwaha and P. Zielinski, Solid State Commun. 112, 605 (1999).
25. M. S. Kushwaha and H. Sakaki, Phys. Rev. B 69, 155331 (2004).
26. M. S. Kushwaha and S. E. Ulloa, Phys. Rev. B 73, 045335 (2006).
27. M. S. Kushwaha, Phys. Rev. B 77, R241305 (2008).
28. D. Pines, The Many-Body Problem (Benjamin, New York, 1961);
28.A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971);
28.G. D. Mahan, Many Particle Physics (Plenum, New York, 1981).
29. W. Hansen, M. Horst, J. P. Kotthaus, U. Merkt, Ch. Sikorski, and K. Ploog, Phys. Rev. Lett. 58, 2586 (1987).
30. J. Alsmeier, Ch. Sikorski, and U. Merkt, Phys. Rev. B 37, 4314 (1988).
31. F. Brinkop, W. Hansen, J. P. Kotthaus, and K. Ploog, Phys. Rev. B 37, 6547 (1988).
32. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. B 38, 12732 (1988).
33. J. Alsmeier, E. Batke, and J. P. Kotthaus, Phys. Rev. B 40, 12574 (1989).
34. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 66, 2657 (1991).
35. H. Drexler, W. Hansen, J. P. Kotthaus, M. Holland, and S. P. Beaumont, Phys. Rev. B 46, 12849 (1992).
36. A. S. Plaut, H. Lage, P. Grambow, D. Heitmann, K. vo Klitzing, and K. Ploog, Phys. Rev. Lett. 67, 1642 (1991).
37. A. R. Goñi, L. N. Pfeiffer, K. W. West, A. Pinczuk, H. U. Baranger, and H. L. Stormer, Appl. Phys. Lett. 61, 1956 (1992).
38. J. S. Weiner, J. M. Calleja, A. Pinczuk, A. Schmeller, B. S. Dennis, A. R. Goñi, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 63, 237 (1993).
39. J. M. Calleja, A. R. Goñi, A. Pinczuk, B. S. Dennis, J. S. Weiner, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 51, 4285 (1995).
40. J. S. Weiner, G. Danan, A. Pinczuk, J. Valladares, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 63, 1641 (1989).
41. T. Egeler, G. Abstreiter, G. Weimann, T. Demel, D. Heitmann, P. Grambow, and W. Schlapp, Phys. Rev. Lett. 65, 1804 (1990).
42. A. R. Goñi, A. Pinczuk, J. S. Weiner, J. M. Calleja, B. S. Dennis, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 67, 3298 (1991).
43. R. Strenz, U. Bockelmann, F. Hirler, G. Abstreiter, G. Böhm, and G. Weimann, Phys. Rev. Lett. 73, 3022 (1994).
44. C. Dahl, B. Jusserand, and B. Etiene, Phys. Rev. B 51, 17211 (1995).
45. C. Schüller, G. Biese, K. Keller, C. Steinebach, D. Heitmann, P. Grambow, and K. Eberl, Phys. Rev. B 54, R17304 (1996).
46. The following generalized the Kohn theorem [W. Kohn, Phys. Rev. 123, 1242 (1961)] for the quantum wells, quantum wires, and quantum dots, respectively.
46.L. Brey, N. F. Johnson, and B. I. Halperin, Phys. Rev. B 40, 10647 (1989);
46.Q. P. Li, K. Karrai, S. K. Yip, S. Das Sarma, and H. D. Drew, Phys. Rev. B 43, 5151 (1991);
46.F. M. Peeters, Phys. Rev. B 42, 1486 (1990).
47. M. S. Kushwaha, AIP Advances 2, 032104 (2012).
48. D. N. Zubarev, Sov. Phys. – Uspekhi 3, 320 (1960).
49. J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
50. M. S. Kushwaha and F. Garcia-Moliner, Phys. Lett. A 205, 217 (1995).
51. E. Fermi, Phys. Rev. 57, 485 (1940).
52. H. A. Kramers, Physica 13, 401 (1947).
53. R. H. Ritchie, Phys. Rev. 106, 874 (1957).
54. H. Ibach, J. Electron. Spectros. Relat. Phenom. 64/65, 819 (1993).
55. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1994).
56. P. M. Platzman, Phys. Rev. 139, A379 (1965).
57. P. A. Wolf, Phys. Rev. 171, 436 (1968).
58. F. A. Blum, Phys. Rev. 1, 1125 (1970).
59. C. Steinebach, C. Schuller, and D. Heitmann, Phys. Rev. B 59, 10240 (1999);
59.S. Das Sarma and D. W. Wang, Phys. Rev. Lett. 83, 816 (1999).
60. B. Jusserand, M. N. Vijayaraghavan, F. Laruelle, A. Cavanna, and B. Etienne, Phys. Rev. Lett. 85, 5400 (2000).

Data & Media loading...


Article metrics loading...



The nanofabrication technology has taught us that an -dimensional confining potential imposed upon an -dimensional electron gas paves the way to a quasi-(-)-dimensional electron gas, with and 1 ⩽ , ⩽ 3. This is the road to the (semiconducting) quasi- dimensional electron gas systems we have been happily traversing on now for almost two decades. Achieving quasi-one dimensional electron gas (Q-1DEG) [or quantum wire(s) for more practical purposes] led us to some mixed moments in this journey: while the reduced phase space for the scattering led us believe in the route to the faster electron devices, the proximity to the 1D systems left us in the dilemma of describing it as a Fermi liquid or as a Luttinger liquid. No one had ever suspected the potential of the former, but it took quite a while for some to convince the others on the latter. A realistic Q-1DEG system at the low temperatures is best describable as a Fermi liquid rather than as a Luttinger liquid. In the language of condensed matter physics, a critical scrutiny of Q-1DEG systems has provided us with a host of exotic (electronic, optical, and transport) phenomena unseen in their higher- or lower-dimensional counterparts. This has motivated us to undertake a systematic investigation of the inelastic electron scattering (IES) and the inelastic light scattering (ILS) from the elementary electronic excitations in quantum wires. We begin with the Kubo's correlation functions to derive the generalized dielectric function, the inverse dielectric function, and the Dyson equation for the dynamic screened potential in the framework of Bohm-Pines’ random-phase approximation. These fundamental tools then lead us to develop methodically the theory of IES and ILS for the Q-1DEG systems. As an application of the general formal results, which know no bounds regarding the subband occupancy, we compute the density of states, the Fermi energy, the full excitation spectrum [comprised of intrasubband and intersubband single-particle as well as collective excitations], the loss functions for the IES and the Raman intensity for the ILS. We observe that it is the collective (plasmon) excitations that largely contribute to the predominant peaks in the energy-loss and the Raman spectra. The inductive reasoning is that the IES can be a potential alternative of the overused ILS for investigating collective excitations in quantum wires. We trust that this research work shall be useful to all – from novice to expert and from theorist to experimentalist – who believe in the power of traditional science.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd