Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/4/10.1063/1.4800685
1.
1. For an extensive review of electronic, optical, and transport phenomena in the systems of reduced dimensions such as quantum wells, quantum wires, quantum dots, and electrically/magnetically modulated 2DES systems, see M. S. Kushwaha, Surf. Sci. Rep. 41, 1 (2001).
http://dx.doi.org/10.1016/S0167-5729(00)00007-8
2.
2. H. Sakaki, Jpn. J. Appl. Phys. 19, L735 (1980).
http://dx.doi.org/10.1143/JJAP.19.L735
3.
3. M. S. Kushwaha, J. Appl. Phys. 109, 106102 (2011); and the references therein.
http://dx.doi.org/10.1063/1.3592637
4.
4. B. Y. K. Hu and S. Das Sarma, Phys. Rev. Lett. 68, 1750 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.1750
5.
5. J. M. Calleja, A. R. Goñi, A. Pinczuk, B. S. Dennis, J. S. Weiner, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 51, 4285 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4285
6.
6. Q. P. Li, S. Das Sarma, and R. Joynt, Phys. Rev. B 45, 13713 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13713
7.
7. P. F. Williams and A. N. Bloch, Phys. Rev. B 10, 1097 (1974).
http://dx.doi.org/10.1103/PhysRevB.10.1097
8.
8. M. Apostol, Z. Phys. B 22, 279 (1975).
http://dx.doi.org/10.1007/BF01362251
9.
9. V. B. Campos, O. Hipolito, and R. Lobo, Phys. Stat. Sol. B 81, 657 (1977).
http://dx.doi.org/10.1002/pssb.2220810229
10.
10. W. I. Friesen and B. Bergersen, J. Phys. C 13, 6627 (1980).
http://dx.doi.org/10.1088/0022-3719/13/36/016
11.
11. Y. C. Lee, S. Ullova, and P. S. Lee, J. Phys. C 16, L995 (1983).
http://dx.doi.org/10.1088/0022-3719/16/28/003
12.
12. H. Wagner, H. P. Geserich, R. V. Baltz, and K. Krogman, Solid State Commun. 13, 943 (1973).
http://dx.doi.org/10.1016/0038-1098(73)90453-5
13.
13. A. A. Bright, A. F. Garito, and A. J. Heeger, Phys. Rev. B 10, 1328 (1974).
http://dx.doi.org/10.1103/PhysRevB.10.1328
14.
14. P. F. Williams, M. A. Butler, D. L. Rousseau, and A. N. Bloch, Phys. Rev. B 10, 1109 (1974).
http://dx.doi.org/10.1103/PhysRevB.10.1109
15.
15. J. J. Ritsko, D. J. Sandman, A. J. Epstein, P. C. Gibbons, S. E. Schnatterly, and J. Fields, Phys. Rev. Lett. 34, 1330 (1975).
http://dx.doi.org/10.1103/PhysRevLett.34.1330
16.
16. S. Das Sarma and W. Y. Lai, Phys. Rev. B 32, 1401 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.1401
17.
17. W. Que and G. Kirczenow, Phys. Rev. B 37, 7153 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.7153
18.
18. A. Gold and A. Ghazali, Phys. Rev. B 41, 7626 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7626
19.
19. Q. P. Li and S. Das Sarma, Phys. Rev. B 43, 11768 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.11768
20.
20. P. W. Park, A. H. MacDonald, and W. L. Schaich, Phys. Rev. B 46, 12635 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.12635
21.
21. F. A. Reboredo and C. R. Proetto, Phys. Rev. B 50, 15174 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.15174
22.
22. S. Das Sarma, E. H. Hwang, and L. Zheng, Phys. Rev. B 54, 8057 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.8057
23.
23. A. N. Borges, S. A. Leao, and O. Hipolito, Phys. Rev. B 55, 4680 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.4680
24.
24. M. S. Kushwaha and P. Zielinski, Solid State Commun. 112, 605 (1999).
http://dx.doi.org/10.1016/S0038-1098(99)00413-5
25.
25. M. S. Kushwaha and H. Sakaki, Phys. Rev. B 69, 155331 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155331
26.
26. M. S. Kushwaha and S. E. Ulloa, Phys. Rev. B 73, 045335 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.045335
27.
27. M. S. Kushwaha, Phys. Rev. B 77, R241305 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.241305
28.
28. D. Pines, The Many-Body Problem (Benjamin, New York, 1961);
28.A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971);
28.G. D. Mahan, Many Particle Physics (Plenum, New York, 1981).
29.
29. W. Hansen, M. Horst, J. P. Kotthaus, U. Merkt, Ch. Sikorski, and K. Ploog, Phys. Rev. Lett. 58, 2586 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2586
30.
30. J. Alsmeier, Ch. Sikorski, and U. Merkt, Phys. Rev. B 37, 4314 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.4314
31.
31. F. Brinkop, W. Hansen, J. P. Kotthaus, and K. Ploog, Phys. Rev. B 37, 6547 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.6547
32.
32. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. B 38, 12732 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.12732
33.
33. J. Alsmeier, E. Batke, and J. P. Kotthaus, Phys. Rev. B 40, 12574 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.12574
34.
34. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 66, 2657 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.2657
35.
35. H. Drexler, W. Hansen, J. P. Kotthaus, M. Holland, and S. P. Beaumont, Phys. Rev. B 46, 12849 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.12849
36.
36. A. S. Plaut, H. Lage, P. Grambow, D. Heitmann, K. vo Klitzing, and K. Ploog, Phys. Rev. Lett. 67, 1642 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.1642
37.
37. A. R. Goñi, L. N. Pfeiffer, K. W. West, A. Pinczuk, H. U. Baranger, and H. L. Stormer, Appl. Phys. Lett. 61, 1956 (1992).
http://dx.doi.org/10.1063/1.108375
38.
38. J. S. Weiner, J. M. Calleja, A. Pinczuk, A. Schmeller, B. S. Dennis, A. R. Goñi, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 63, 237 (1993).
http://dx.doi.org/10.1063/1.110352
39.
39. J. M. Calleja, A. R. Goñi, A. Pinczuk, B. S. Dennis, J. S. Weiner, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 51, 4285 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4285
40.
40. J. S. Weiner, G. Danan, A. Pinczuk, J. Valladares, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 63, 1641 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1641
41.
41. T. Egeler, G. Abstreiter, G. Weimann, T. Demel, D. Heitmann, P. Grambow, and W. Schlapp, Phys. Rev. Lett. 65, 1804 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1804
42.
42. A. R. Goñi, A. Pinczuk, J. S. Weiner, J. M. Calleja, B. S. Dennis, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 67, 3298 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.3298
43.
43. R. Strenz, U. Bockelmann, F. Hirler, G. Abstreiter, G. Böhm, and G. Weimann, Phys. Rev. Lett. 73, 3022 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.3022
44.
44. C. Dahl, B. Jusserand, and B. Etiene, Phys. Rev. B 51, 17211 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.17211
45.
45. C. Schüller, G. Biese, K. Keller, C. Steinebach, D. Heitmann, P. Grambow, and K. Eberl, Phys. Rev. B 54, R17304 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.R17304
46.
46. The following generalized the Kohn theorem [W. Kohn, Phys. Rev. 123, 1242 (1961)] for the quantum wells, quantum wires, and quantum dots, respectively.
http://dx.doi.org/10.1103/PhysRev.123.1242
46.L. Brey, N. F. Johnson, and B. I. Halperin, Phys. Rev. B 40, 10647 (1989);
http://dx.doi.org/10.1103/PhysRevB.40.10647
46.Q. P. Li, K. Karrai, S. K. Yip, S. Das Sarma, and H. D. Drew, Phys. Rev. B 43, 5151 (1991);
http://dx.doi.org/10.1103/PhysRevB.43.5151
46.F. M. Peeters, Phys. Rev. B 42, 1486 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.1486
47.
47. M. S. Kushwaha, AIP Advances 2, 032104 (2012).
http://dx.doi.org/10.1063/1.4738370
48.
48. D. N. Zubarev, Sov. Phys. – Uspekhi 3, 320 (1960).
http://dx.doi.org/10.1070/PU1960v003n03ABEH003275
49.
49. J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
http://dx.doi.org/10.1103/PhysRev.97.869
50.
50. M. S. Kushwaha and F. Garcia-Moliner, Phys. Lett. A 205, 217 (1995).
http://dx.doi.org/10.1016/0375-9601(95)00566-L
51.
51. E. Fermi, Phys. Rev. 57, 485 (1940).
http://dx.doi.org/10.1103/PhysRev.57.485
52.
52. H. A. Kramers, Physica 13, 401 (1947).
http://dx.doi.org/10.1016/0031-8914(47)90014-1
53.
53. R. H. Ritchie, Phys. Rev. 106, 874 (1957).
http://dx.doi.org/10.1103/PhysRev.106.874
54.
54. H. Ibach, J. Electron. Spectros. Relat. Phenom. 64/65, 819 (1993).
http://dx.doi.org/10.1016/0368-2048(93)80155-F
55.
55. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1994).
56.
56. P. M. Platzman, Phys. Rev. 139, A379 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A379
57.
57. P. A. Wolf, Phys. Rev. 171, 436 (1968).
http://dx.doi.org/10.1103/PhysRev.171.436
58.
58. F. A. Blum, Phys. Rev. 1, 1125 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.1125
59.
59. C. Steinebach, C. Schuller, and D. Heitmann, Phys. Rev. B 59, 10240 (1999);
http://dx.doi.org/10.1103/PhysRevB.59.10240
59.S. Das Sarma and D. W. Wang, Phys. Rev. Lett. 83, 816 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.816
60.
60. B. Jusserand, M. N. Vijayaraghavan, F. Laruelle, A. Cavanna, and B. Etienne, Phys. Rev. Lett. 85, 5400 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.5400
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4800685
Loading
/content/aip/journal/adva/3/4/10.1063/1.4800685
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4800685
2013-04-08
2016-12-09

Abstract

The nanofabrication technology has taught us that an -dimensional confining potential imposed upon an -dimensional electron gas paves the way to a quasi-(-)-dimensional electron gas, with and 1 ⩽ , ⩽ 3. This is the road to the (semiconducting) quasi- dimensional electron gas systems we have been happily traversing on now for almost two decades. Achieving quasi-one dimensional electron gas (Q-1DEG) [or quantum wire(s) for more practical purposes] led us to some mixed moments in this journey: while the reduced phase space for the scattering led us believe in the route to the faster electron devices, the proximity to the 1D systems left us in the dilemma of describing it as a Fermi liquid or as a Luttinger liquid. No one had ever suspected the potential of the former, but it took quite a while for some to convince the others on the latter. A realistic Q-1DEG system at the low temperatures is best describable as a Fermi liquid rather than as a Luttinger liquid. In the language of condensed matter physics, a critical scrutiny of Q-1DEG systems has provided us with a host of exotic (electronic, optical, and transport) phenomena unseen in their higher- or lower-dimensional counterparts. This has motivated us to undertake a systematic investigation of the inelastic electron scattering (IES) and the inelastic light scattering (ILS) from the elementary electronic excitations in quantum wires. We begin with the Kubo's correlation functions to derive the generalized dielectric function, the inverse dielectric function, and the Dyson equation for the dynamic screened potential in the framework of Bohm-Pines’ random-phase approximation. These fundamental tools then lead us to develop methodically the theory of IES and ILS for the Q-1DEG systems. As an application of the general formal results, which know no bounds regarding the subband occupancy, we compute the density of states, the Fermi energy, the full excitation spectrum [comprised of intrasubband and intersubband single-particle as well as collective excitations], the loss functions for the IES and the Raman intensity for the ILS. We observe that it is the collective (plasmon) excitations that largely contribute to the predominant peaks in the energy-loss and the Raman spectra. The inductive reasoning is that the IES can be a potential alternative of the overused ILS for investigating collective excitations in quantum wires. We trust that this research work shall be useful to all – from novice to expert and from theorist to experimentalist – who believe in the power of traditional science.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4800685.html;jsessionid=3Opa2B_z1uhhH3oFZnPKMwHs.x-aip-live-02?itemId=/content/aip/journal/adva/3/4/10.1063/1.4800685&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/4/10.1063/1.4800685&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/4/10.1063/1.4800685'
Right1,Right2,Right3,