Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Andrei, D. Dima, and L. Andrei, J. Opt. Adv. Mater. 2, 726730 (2006).
2. M. S. Dresselhaus, G. Dresslhous, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties And Application (Springer, Berlin, Germany, 2001).
3. S. Rawal, Jom.-J. Min. Met. Mat. S. 14, 54 (2001).
4. H. Mahfuz, S. Zainuddin, M. R. Parker, T. Al-Saadi, V. K. Rangari, and S. Jeelani, J. Mater. Sci. 44, 11131120 (2009).
5. Y. X. Zhou, P. X. Wu, Z. Y. Cheng, J. Ingram, and S. Jeelani, Exp. Poly. Lett. 2, 4048 (2008).
6. H. Mahfuz, A. Adnan, V. Rangari, M. Hasan, S. Jeelani, W. J. Wright, and S. DeTeresa, Appl. Phys. Lett. 88, 083119 (2006).
7. C. Grimes, C. Mungle, D. Kouzoudis, S. Fang, and P. Eklund, Chem. Phys. Lett. 319, 460 (2000).
8. L. Jin, C. Bower, and O. Zhou, Appl. Phys. Lett. 73, 1197 (1998).
9. E. S. Choi, J. S. Brooks, D. L. Eaton, M. S. Al-Haik, M. Y. Hussaini, H. Garmestani, D. Li, and K. Dahmen, J. Appl. Phys. 94, 6034 (2003).
10. F. Tsui, L. Jim, and O. Zhou, Appl. Phys. Lett. 76, 1452 (2000).
11. P. Li and W. Xue, Nanoscale Res. Lett. 5, 10721078 (2010).
12. M. Senneti, E. Welsh, J. B. Wright, W. Z. Li, J. G. Wen, and Z. F. Ren, Appl. Phys. A 76, 111113 (2003).
13. Y. J. Yoon and H. K. Baik, J. Vac. Sci. Technol. B 19, 27 (2001).
14. W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, Science 268, 845 (1995).
15. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, R. A. Zhou, R. A. Zhao, and G. Wang, Science 274, 1701 (1996).
16. P. M. Ajayan, O. Stephen, C. Colliex, and D. Trauth, Science 265, 1355 (1994).
17. T. Kimura, H. Ago, and M. Tobita, Adv. Mater. 14, 1380 (2002).<1380::AID-ADMA1380>3.0.CO;2-V
18. T. Takahashi, K. Yonetake, K. Koyama, and T. Kikuchi, Macromol. Rapid Commun. 24, 763 (2003).
19. E. Camponeschi, R. Vance, M. Al-Haik, H. Garmestani, and R. Tannenbaum, Carbon 45, 2037 (2007).
20. H. Xing, L. Sun, G. Song, J. Gou, and Y. W. Hao, Nanotech. 19, 025704 (2008).
21. D. Shi, P. He, J. Lian, X. Chaud, S. Bud'ko, E. Beaugnon, L. Wang, R. Ewing, and R. Tournier, J. Appl. Phys. 97, 064312 (2005).
22. M. A. Correa-Duarte, M. Grzelczak, V. Salgueirino-Maceira, M. Giersig, L. M. Liz-Marzan, M. Farle, K. Sierazdki, and R. Diaz, J. Phys. Chem. Lett. B 109, 19061 (2005).
23. J. Sun and L. Gao, J. Electrogram 17, 91 (2006).
24. A. G. Loera, F. Cara, M. Dumon, and J. P. Pascault, Macromolecules 35, 6291 (2002).
25. W. D. Jones, V. K. Rangari, T. A. Hassan, and S. Jeelani, J. of Appl. Poly. Sci. 116, 27832792 (2010).
26. G. Q. Zhang, H. P. Wu, M. Yge, Q. K. Jiang, L. Y. Chen, and J. M. Yao, Mater. Lett. 61, 2204 (2007).
27. V. K. Rangari, Y. Koltypin, Y. S. Cohen, D. Aurbach, O. Palchik, I. Felner, and A. Gednken, J. Mater. Chem. 10, 1125 (2000).
28. R. Vijayakumar, Y. Koltypin, I. Felner, and A. Gedanken, Mater. Sci. Eng. A 286, 101 (2000).
29. P. J. Flanders, J. Appl. Phys. 63, 3940 (1988).
30. O. Malkina, H. Mahfuz, K. D. Sorge, and V. K. Rangari, J. Mater. Sci. 46, 3982 (2011).
31. N. Chisholm, H. Mahfuz, V. K. Rangari, A. Ashfaq, and S. Jeelani, Compos. Struct. 67, 115 (2005).
32. R. Rodgers, H. Mahfuz, V. K. Rangari, N. Chisholm, and S. Jeelani, Macro. Mol. Mater. and Eng., 290, 423 (2005).
33. M. R. Khan, H. Mahfuz, and T. Leventouri, J. Mater. Res. 27, 2657 (2012).
34. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett. 76, 2868 (2000).
35. F. H. Gojny, M. H. Wichmann, B. Fiedler, and K. Schulte, Comp. Sci. Tech. 65, 2300 (2005).
36. H. Mahfuz, S. Zainuddin, M. Parker, T. Al-saadi, V. K. Rangari, and S. Jeelani, Mater. Lett. 61, 253 (2007).
37. T. Tsai, P. Chen, D. Lu, and G. Yang, Nanoscale Res. Lett. 6, 264 (2011).
38. S. Chatterjee, A. Bandopadhya, and K. Sarkar, J Nanotechnology 9, 34 (2011).
39. R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd Edition (Springer, 1996).
40. H. Mahfuz, M. R. Khan, T. Leventouri, and E. Liarokapis, Int. J. Nanotechnol. 2011, 637395 (2011).
41. J. Jancar, J. F. Douglas, F. W. Starr, S. K. Kumar, P. Cassagnau, A. J. Lesser, S. S. Sterstein, and M. J. Buehler, Polymer 51, 3321 (2010).
42. A. Giuseppe, R. Guido, and V. Michele, Prog. Polymer Sci. 33, 683 (2008).
43. L. Shen, Y. Lin, Q. Du, and W. Zhong, Compos. Sci. Tech. 66, 2242 (2006).

Data & Media loading...


Article metrics loading...



We report significant improvement in mechanical properties of SC-15 epoxy when reinforced with decorated nanotubes and cured in a modest magnetic field. The chemical synthesis and field curing process is a low cost and relatively easy technique to impose strong magnetic anisotropy into the system without the need of a superconducting magnet. SWCNT(COOH)s were decorated with FeO nanoparticles through a sonochemical oxidation process and then dispersed into SC-15 epoxy at 0.5 wt% loading. The admixture was cured for 6 hours in a magnetic field of 10 kOe followed by an additional 24 hours of post curing at room temperature. Control samples were prepared in a similar manner but without the application of the magnetic field. Mechanical tests performed on field-cured samples indicated that tensile strength and modulus increased by 62% and 40%. Most importantly, modulus of toughness, fracture strain, and modulus of resilience improved by 346%, 165%% and 170%, respectively. Such enhancement in mechanical properties was attributed to changes in polymer morphology, partial alignment of nanotubes in the field direction, and sliding at the polymer-nanotube interface. Detailed characterization of the system with XRD, TEM, DMA, and Magnetometry are described in the paper.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd