1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Magnetic alignment of SWCNTs decorated with Fe3O4 to enhance mechanical properties of SC-15 epoxy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/4/10.1063/1.4800698
1.
1. G. Andrei, D. Dima, and L. Andrei, J. Opt. Adv. Mater. 2, 726730 (2006).
2.
2. M. S. Dresselhaus, G. Dresslhous, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties And Application (Springer, Berlin, Germany, 2001).
3.
3. S. Rawal, Jom.-J. Min. Met. Mat. S. 14, 54 (2001).
4.
4. H. Mahfuz, S. Zainuddin, M. R. Parker, T. Al-Saadi, V. K. Rangari, and S. Jeelani, J. Mater. Sci. 44, 11131120 (2009).
http://dx.doi.org/10.1007/s10853-008-3161-5
5.
5. Y. X. Zhou, P. X. Wu, Z. Y. Cheng, J. Ingram, and S. Jeelani, Exp. Poly. Lett. 2, 4048 (2008).
http://dx.doi.org/10.3144/expresspolymlett.2008.6
6.
6. H. Mahfuz, A. Adnan, V. Rangari, M. Hasan, S. Jeelani, W. J. Wright, and S. DeTeresa, Appl. Phys. Lett. 88, 083119 (2006).
http://dx.doi.org/10.1063/1.2179132
7.
7. C. Grimes, C. Mungle, D. Kouzoudis, S. Fang, and P. Eklund, Chem. Phys. Lett. 319, 460 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00196-2
8.
8. L. Jin, C. Bower, and O. Zhou, Appl. Phys. Lett. 73, 1197 (1998).
http://dx.doi.org/10.1063/1.122125
9.
9. E. S. Choi, J. S. Brooks, D. L. Eaton, M. S. Al-Haik, M. Y. Hussaini, H. Garmestani, D. Li, and K. Dahmen, J. Appl. Phys. 94, 6034 (2003).
http://dx.doi.org/10.1063/1.1616638
10.
10. F. Tsui, L. Jim, and O. Zhou, Appl. Phys. Lett. 76, 1452 (2000).
http://dx.doi.org/10.1063/1.126061
11.
11. P. Li and W. Xue, Nanoscale Res. Lett. 5, 10721078 (2010).
http://dx.doi.org/10.1007/s11671-010-9604-3
12.
12. M. Senneti, E. Welsh, J. B. Wright, W. Z. Li, J. G. Wen, and Z. F. Ren, Appl. Phys. A 76, 111113 (2003).
http://dx.doi.org/10.1007/s00339-002-1449-x
13.
13. Y. J. Yoon and H. K. Baik, J. Vac. Sci. Technol. B 19, 27 (2001).
http://dx.doi.org/10.1116/1.1340667
14.
14. W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, Science 268, 845 (1995).
http://dx.doi.org/10.1126/science.268.5212.845
15.
15. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, R. A. Zhou, R. A. Zhao, and G. Wang, Science 274, 1701 (1996).
http://dx.doi.org/10.1126/science.274.5293.1701
16.
16. P. M. Ajayan, O. Stephen, C. Colliex, and D. Trauth, Science 265, 1355 (1994).
http://dx.doi.org/10.1126/science.265.5176.1212
17.
17. T. Kimura, H. Ago, and M. Tobita, Adv. Mater. 14, 1380 (2002).
http://dx.doi.org/10.1002/1521-4095(20021002)14:19<1380::AID-ADMA1380>3.0.CO;2-V
18.
18. T. Takahashi, K. Yonetake, K. Koyama, and T. Kikuchi, Macromol. Rapid Commun. 24, 763 (2003).
http://dx.doi.org/10.1002/marc.200350021
19.
19. E. Camponeschi, R. Vance, M. Al-Haik, H. Garmestani, and R. Tannenbaum, Carbon 45, 2037 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.05.024
20.
20. H. Xing, L. Sun, G. Song, J. Gou, and Y. W. Hao, Nanotech. 19, 025704 (2008).
http://dx.doi.org/10.1088/0957-4484/19/02/025704
21.
21. D. Shi, P. He, J. Lian, X. Chaud, S. Bud'ko, E. Beaugnon, L. Wang, R. Ewing, and R. Tournier, J. Appl. Phys. 97, 064312 (2005).
http://dx.doi.org/10.1063/1.1861143
22.
22. M. A. Correa-Duarte, M. Grzelczak, V. Salgueirino-Maceira, M. Giersig, L. M. Liz-Marzan, M. Farle, K. Sierazdki, and R. Diaz, J. Phys. Chem. Lett. B 109, 19061 (2005).
23.
23. J. Sun and L. Gao, J. Electrogram 17, 91 (2006).
http://dx.doi.org/10.1007/s10832-006-9944-7
24.
24. A. G. Loera, F. Cara, M. Dumon, and J. P. Pascault, Macromolecules 35, 6291 (2002).
http://dx.doi.org/10.1021/ma011567i
25.
25. W. D. Jones, V. K. Rangari, T. A. Hassan, and S. Jeelani, J. of Appl. Poly. Sci. 116, 27832792 (2010).
26.
26. G. Q. Zhang, H. P. Wu, M. Yge, Q. K. Jiang, L. Y. Chen, and J. M. Yao, Mater. Lett. 61, 2204 (2007).
http://dx.doi.org/10.1016/j.matlet.2006.08.051
27.
27. V. K. Rangari, Y. Koltypin, Y. S. Cohen, D. Aurbach, O. Palchik, I. Felner, and A. Gednken, J. Mater. Chem. 10, 1125 (2000).
http://dx.doi.org/10.1039/b000440p
28.
28. R. Vijayakumar, Y. Koltypin, I. Felner, and A. Gedanken, Mater. Sci. Eng. A 286, 101 (2000).
http://dx.doi.org/10.1016/S0921-5093(00)00647-X
29.
29. P. J. Flanders, J. Appl. Phys. 63, 3940 (1988).
http://dx.doi.org/10.1063/1.340582
30.
30. O. Malkina, H. Mahfuz, K. D. Sorge, and V. K. Rangari, J. Mater. Sci. 46, 3982 (2011).
http://dx.doi.org/10.1007/s10853-011-5325-y
31.
31. N. Chisholm, H. Mahfuz, V. K. Rangari, A. Ashfaq, and S. Jeelani, Compos. Struct. 67, 115 (2005).
http://dx.doi.org/10.1016/j.compstruct.2004.01.010
32.
32. R. Rodgers, H. Mahfuz, V. K. Rangari, N. Chisholm, and S. Jeelani, Macro. Mol. Mater. and Eng., 290, 423 (2005).
http://dx.doi.org/10.1002/mame.200400202
33.
33. M. R. Khan, H. Mahfuz, and T. Leventouri, J. Mater. Res. 27, 2657 (2012).
http://dx.doi.org/10.1557/jmr.2012.155
34.
34. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett. 76, 2868 (2000).
http://dx.doi.org/10.1063/1.126500
35.
35. F. H. Gojny, M. H. Wichmann, B. Fiedler, and K. Schulte, Comp. Sci. Tech. 65, 2300 (2005).
http://dx.doi.org/10.1016/j.compscitech.2005.04.021
36.
36. H. Mahfuz, S. Zainuddin, M. Parker, T. Al-saadi, V. K. Rangari, and S. Jeelani, Mater. Lett. 61, 253 (2007).
http://dx.doi.org/10.1016/j.matlet.2006.09.065
37.
37. T. Tsai, P. Chen, D. Lu, and G. Yang, Nanoscale Res. Lett. 6, 264 (2011).
http://dx.doi.org/10.1186/1556-276X-6-264
38.
38. S. Chatterjee, A. Bandopadhya, and K. Sarkar, J Nanotechnology 9, 34 (2011).
39.
39. R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd Edition (Springer, 1996).
40.
40. H. Mahfuz, M. R. Khan, T. Leventouri, and E. Liarokapis, Int. J. Nanotechnol. 2011, 637395 (2011).
41.
41. J. Jancar, J. F. Douglas, F. W. Starr, S. K. Kumar, P. Cassagnau, A. J. Lesser, S. S. Sterstein, and M. J. Buehler, Polymer 51, 3321 (2010).
http://dx.doi.org/10.1016/j.polymer.2010.04.074
42.
42. A. Giuseppe, R. Guido, and V. Michele, Prog. Polymer Sci. 33, 683 (2008).
http://dx.doi.org/10.1016/j.progpolymsci.2008.02.003
43.
43. L. Shen, Y. Lin, Q. Du, and W. Zhong, Compos. Sci. Tech. 66, 2242 (2006).
http://dx.doi.org/10.1016/j.compscitech.2005.12.005
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4800698
Loading
/content/aip/journal/adva/3/4/10.1063/1.4800698
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4800698
2013-04-04
2014-10-25

Abstract

We report significant improvement in mechanical properties of SC-15 epoxy when reinforced with decorated nanotubes and cured in a modest magnetic field. The chemical synthesis and field curing process is a low cost and relatively easy technique to impose strong magnetic anisotropy into the system without the need of a superconducting magnet. SWCNT(COOH)s were decorated with FeO nanoparticles through a sonochemical oxidation process and then dispersed into SC-15 epoxy at 0.5 wt% loading. The admixture was cured for 6 hours in a magnetic field of 10 kOe followed by an additional 24 hours of post curing at room temperature. Control samples were prepared in a similar manner but without the application of the magnetic field. Mechanical tests performed on field-cured samples indicated that tensile strength and modulus increased by 62% and 40%. Most importantly, modulus of toughness, fracture strain, and modulus of resilience improved by 346%, 165%% and 170%, respectively. Such enhancement in mechanical properties was attributed to changes in polymer morphology, partial alignment of nanotubes in the field direction, and sliding at the polymer-nanotube interface. Detailed characterization of the system with XRD, TEM, DMA, and Magnetometry are described in the paper.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4800698.html;jsessionid=mcpxgcpduv4y.x-aip-live-06?itemId=/content/aip/journal/adva/3/4/10.1063/1.4800698&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Magnetic alignment of SWCNTs decorated with Fe3O4 to enhance mechanical properties of SC-15 epoxy
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4800698
10.1063/1.4800698
SEARCH_EXPAND_ITEM